
Ana Borras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1820420/publications.pdf Version: 2024-02-01

ANA RODDAS

#	Article	IF	CITATIONS
1	Plasma engineering of microstructured piezo – Triboelectric hybrid nanogenerators for wide bandwidth vibration energy harvesting. Nano Energy, 2022, 91, 106673.	8.2	12
2	Highly Anisotropic Organometal Halide Perovskite Nanowalls Grown by Glancingâ€Angle Deposition. Advanced Materials, 2022, 34, e2107739.	11.1	5
3	Coarseâ€grained approach to amorphous and anisotropic materials in kinetic Monte Carlo thinâ€filmÂgrowth simulations: A case study of TiO ₂ and ZnO by plasmaâ€enhanced chemical vapor deposition. Plasma Processes and Polymers, 2022, 19, .	1.6	2
4	Highly Anisotropic Organometal Halide Perovskite Nanowalls Grown by Glancingâ€Angle Deposition (Adv. Mater. 18/2022). Advanced Materials, 2022, 34, .	11.1	1
5	Ultrathin Plasma Polymer Passivation of Perovskite Solar Cells for Improved Stability and Reproducibility. Advanced Energy Materials, 2022, 12, .	10.2	8
6	Anisotropic Resistivity Surfaces Produced in ITO Films by Laserâ€Induced Nanoscale Selfâ€organization. Advanced Optical Materials, 2021, 9, 2001086.	3.6	24
7	One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR. Nanoscale, 2021, 13, 13882-13895.	2.8	4
8	Anisotropic Resistivity ITO Surfaces produced by Laser-induced Self-organization at the Nanoscale. , 2021, , .		0
9	Mechanically Switchable Wetting Petal Effect in Self-Patterned Nanocolumnar Films on Poly(dimethylsiloxane). Nanomaterials, 2021, 11, 2566.	1.9	2
10	Plasmaâ€Assisted Deposition of TiO ₂ 3D Nanomembranes: Selective Wetting, Superomniphobicity, and Selfâ€Cleaning. Advanced Materials Interfaces, 2021, 8, 2100767.	1.9	6
11	Hierarchical Photocatalytic Surfaces: From 1D to 3D Photoactive TiO2 Nanotubes Grown By Plasma Assisted Deposition Techniques. ECS Meeting Abstracts, 2021, MA2021-02, 675-675.	0.0	0
12	Plasmaâ€Assisted Deposition of TiO ₂ 3D Nanomembranes: Selective Wetting, Superomniphobicity, and Selfâ€Cleaning (Adv. Mater. Interfaces 21/2021). Advanced Materials Interfaces, 2021, 8, 2170122.	1.9	0
13	(Invited) Supported Core@Multishell Nanowires and Nanotubes As a Platform for Water Management and Water Energy Harvesting. ECS Meeting Abstracts, 2021, MA2021-02, 670-670.	0.0	0
14	Enhanced Stability of Perovskite Solar Cells Incorporating Dopantâ€Free Crystalline Spiroâ€OMeTAD Layers by Vacuum Sublimation. Advanced Energy Materials, 2020, 10, 1901524.	10.2	30
15	Robust anti-icing superhydrophobic aluminum alloy surfaces by grafting fluorocarbon molecular chains. Applied Materials Today, 2020, 21, 100815.	2.3	37
16	Plasma-Enabled Amorphous TiO ₂ Nanotubes as Hydrophobic Support for Molecular Sensing by SERS. ACS Applied Materials & Interfaces, 2020, 12, 50721-50733.	4.0	35
17	Hydrophobic and Anti-Icing Behavior of UV-Laser-Treated Polyester Resin-Based Gelcoats. Processes, 2020, 8, 1642.	1.3	13
18	Supported Porous Nanostructures Developed by Plasma Processing of Metal Phthalocyanines and Porphyrins. Frontiers in Chemistry, 2020, 8, 520.	1.8	3

Ana Borras

#	Article	IF	CITATIONS
19	Perovskite Solar Cells: Enhanced Stability of Perovskite Solar Cells Incorporating Dopantâ€Free Crystalline Spiroâ€OMeTAD Layers by Vacuum Sublimation (Adv. Energy Mater. 2/2020). Advanced Energy Materials, 2020, 10, 2070007.	10.2	0
20	Plasma Enabled Conformal and Damage Free Encapsulation of Fragile Molecular Matter: from Surface‣upported to Onâ€Device Nanostructures. Advanced Functional Materials, 2019, 29, 1903535.	7.8	13
21	Hydrophobicity, Freezing Delay, and Morphology of Laser-Treated Aluminum Surfaces. Langmuir, 2019, 35, 6483-6491.	1.6	29
22	Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition. Frontiers of Chemical Science and Engineering, 2019, 13, 330-339.	2.3	8
23	Hydrophobic and Icephobic Behaviour of Polyurethane-Based Nanocomposite Coatings. Coatings, 2019, 9, 811.	1.2	14
24	3D Organic Nanofabrics: Plasma-Assisted Synthesis and Antifreezing Behavior of Superhydrophobic and Lubricant-Infused Slippery Surfaces. Langmuir, 2019, 35, 16876-16885.	1.6	13
25	3D core-multishell piezoelectric nanogenerators. Nano Energy, 2019, 58, 476-483.	8.2	39
26	Self-Assembly of the Nonplanar Fe(III) Phthalocyanine Small-Molecule: Unraveling the Impact on the Magnetic Properties of Organic Nanowires. Chemistry of Materials, 2018, 30, 879-887.	3.2	9
27	Enhancing Moisture and Water Resistance in Perovskite Solar Cells by Encapsulation with Ultrathin Plasma Polymers. ACS Applied Materials & Interfaces, 2018, 10, 11587-11594.	4.0	125
28	The Role of Surface Recombination on the Performance of Perovskite Solar Cells: Effect of Morphology and Crystalline Phase of TiO ₂ Contact. Advanced Materials Interfaces, 2018, 5, 1801076.	1.9	30
29	Multicolored Emission and Lasing in DCM-Adamantane Plasma Nanocomposite Optical Films. ACS Applied Materials & Interfaces, 2017, 9, 8948-8959.	4.0	12
30	Lowâ€Temperature Plasma Processing of Platinum Porphyrins for the Development of Metal Nanostructured Layers. Advanced Materials Interfaces, 2017, 4, 1601233.	1.9	10
31	Impact of moisture on efficiency-determining electronic processes in perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 10917-10927.	5.2	95
32	In Situ Determination of the Water Condensation Mechanisms on Superhydrophobic and Superhydrophilic Titanium Dioxide Nanotubes. Langmuir, 2017, 33, 6449-6456.	1.6	23
33	(Invited) Plasma Assisted Oblique Angle Deposition of Transparent and Conductive in-Plane Anisotropic ITO Thin Films. ECS Transactions, 2017, 77, 9-15.	0.3	1
34	Plasma assisted deposition of single and multistacked TiO ₂ hierarchical nanotube photoanodes. Nanoscale, 2017, 9, 8133-8141.	2.8	16
35	One-reactor plasma assisted fabrication of ZnO@TiO 2 multishell nanotubes: assessing the impact of a full coverage on the photovoltaic performance. Scientific Reports, 2017, 7, 9621.	1.6	8
36	Solar Cells: Lowâ€Temperature Plasma Processing of Platinum Porphyrins for the Development of Metal Nanostructured Layers (Adv. Mater. Interfaces 14/2017). Advanced Materials Interfaces, 2017, 4, .	1.9	0

ANA BORRAS

#	Article	IF	CITATIONS
37	Micronâ€scale wedge thin films prepared by plasma enhanced chemical vapor deposition. Plasma Processes and Polymers, 2017, 14, 1700043.	1.6	2
38	(Invited) Plasma Assisted Oblique Angle Deposition of Transparent and Conductive in-Plane Anisotropic ITO Thin Films. ECS Meeting Abstracts, 2017, , .	0.0	0
39	A Full Vacuum Approach for the Fabrication of Hybrid White-Light-Emitting Thin Films and Wide-Range In Situ Tunable Luminescent Microcavities. Advanced Optical Materials, 2016, 4, 1124-1131.	3.6	3
40	Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls. Scientific Reports, 2016, 6, 20637.	1.6	14
41	The interaction between hybrid organic–inorganic halide perovskite and selective contacts in perovskite solar cells: an infrared spectroscopy study. Physical Chemistry Chemical Physics, 2016, 18, 13583-13590.	1.3	55
42	White Light Emission: A Full Vacuum Approach for the Fabrication of Hybrid Whiteâ€Lightâ€Emitting Thin Films and Wideâ€Range In Situ Tunable Luminescent Microcavities (Advanced Optical Materials 7/2016). Advanced Optical Materials, 2016, 4, 1134-1134.	3.6	0
43	Highly Porous ZnO Thin Films and 1D Nanostructures by Remote Plasma Processing of Zn-Phthalocyanine. Plasma Processes and Polymers, 2016, 13, 287-297.	1.6	7
44	Ripening and recrystallization of NaCl nanocrystals in humid conditions. RSC Advances, 2016, 6, 3778-3782.	1.7	10
45	A novel 3D absorption correction method for quantitative EDX-STEM tomography. Ultramicroscopy, 2016, 160, 118-129.	0.8	35
46	Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Progress in Materials Science, 2016, 76, 59-153.	16.0	564
47	Reduced-dose and high-speed acquisition strategies for multi-dimensional electron microscopy. Advanced Structural and Chemical Imaging, 2015, 1, .	4.0	37
48	Laser Treatment of Ag@ZnO Nanorods as Long-Life-Span SERS Surfaces. ACS Applied Materials & Interfaces, 2015, 7, 2331-2339.	4.0	50
49	Ultraviolet Pretreatment of Titanium Dioxide and Tin-Doped Indium Oxide Surfaces as a Promoter of the Adsorption of Organic Molecules in Dry Deposition Processes: Light Patterning of Organic Nanowires. Langmuir, 2015, 31, 8294-8302.	1.6	5
50	Anisotropic In-Plane Conductivity and Dichroic Gold Plasmon Resonance in Plasma-Assisted ITO Thin Films e-Beam-Evaporated at Oblique Angles. ACS Applied Materials & Interfaces, 2015, 7, 10993-11001.	4.0	15
51	Plasma Deposition of Superhydrophobic Ag@TiO ₂ Core@shell Nanorods on Processable Substrates. Plasma Processes and Polymers, 2014, 11, 164-174.	1.6	8
52	Mechanisms of Electron Transport and Recombination in ZnO Nanostructures for Dye ensitized Solar Cells. ChemPhysChem, 2014, 15, 1088-1097.	1.0	22
53	Luminescent 3-hydroxyflavone nanocomposites with a tuneable refractive index for photonics and UV detection by plasma assisted vacuum deposition. Journal of Materials Chemistry C, 2014, 2, 6561-6573.	2.7	16
54	Oxygen Optical Sensing in Gas and Liquids with Nanostructured ZnO Thin Films Based on Exciton Emission Detection. Journal of Physical Chemistry C, 2014, 118, 9852-9859.	1.5	48

ANA BORRAS

#	Article	IF	CITATIONS
55	Bending Induced Self-Organized Switchable Gratings on Polymeric Substrates. ACS Applied Materials & Interfaces, 2014, 6, 11924-11931.	4.0	16
56	Enhanced reactivity and related optical changes of Ag nanoparticles on amorphous Al2O3supports. Nanotechnology, 2013, 24, 365702.	1.3	2
57	Enhancement of visible light-induced surface photo-activity of nanostructured N–TiO2 thin films modified by ion implantation. Chemical Physics Letters, 2013, 582, 95-99.	1.2	12
58	Preparation and characterization of CrO2 films by Low Pressure Chemical Vapor Deposition from CrO3. Thin Solid Films, 2013, 539, 1-11.	0.8	13
59	Vertically Aligned Hybrid Core/Shell Semiconductor Nanowires for Photonics Applications. Advanced Functional Materials, 2013, 23, 5981-5989.	7.8	36
60	Laser induced enhancement of dichroism in supported silver nanoparticles deposited by evaporation at glancing angles. Nanotechnology, 2013, 24, 045301.	1.3	11
61	Performance of Porous, Nanocolumnar ZnO Electrodes Obtained at Low Temperature by Plasma-Enhanced Chemical Vapor Deposition in Dye-Sensitized Solar Cells. Energy and Environment Focus, 2013, 2, 270-276.	0.3	2
62	Correlation lengths, porosity and water adsorption in TiO2thin films prepared by glancing angle deposition. Nanotechnology, 2012, 23, 205701.	1.3	61
63	Vertical and tilted Ag-NPs@ZnO nanorods by plasma-enhanced chemical vapour deposition. Nanotechnology, 2012, 23, 255303.	1.3	17
64	Superhydrophobic supported Ag-NPs@ZnO-nanorods with photoactivity in the visible range. Journal of Materials Chemistry, 2012, 22, 1341-1346.	6.7	41
65	Following the Wetting of One-Dimensional Photoactive Surfaces. Langmuir, 2012, 28, 15047-15055.	1.6	11
66	Roughness assessment and wetting behavior of fluorocarbon surfaces. Journal of Colloid and Interface Science, 2012, 376, 274-282.	5.0	32
67	Critical thickness and nanoporosity of TiO2 optical thin films. Microporous and Mesoporous Materials, 2012, 160, 1-9.	2.2	19
68	Soft plasma processing of organic nanowires: a route for the fabrication of 1D organic heterostructures and the template synthesis of inorganic 1D nanostructures. Nanoscale, 2011, 3, 4554.	2.8	20
69	Supported plasma-made 1D heterostructures: perspectives and applications. Journal Physics D: Applied Physics, 2011, 44, 174016.	1.3	11
70	Comments on "An Essay on Contact Angle Measurements― Determination of Surface Roughness and Modeling of the Wetting Behavior. Plasma Processes and Polymers, 2011, 8, 998-1002.	1.6	10
71	Transparent Nanometric Organic Luminescent Films as UVâ€Active Components in Photonic Structures. Advanced Materials, 2011, 23, 761-765.	11.1	33
72	Selective Dichroic Patterning by Nanosecond Laser Treatment of Ag Nanostripes. Advanced Materials, 2011, 23, 848-853.	11.1	37

Ana Borras

#	Article	IF	CITATIONS
73	Luminescent Thin Films: Transparent Nanometric Organic Luminescent Films as UV-Active Components in Photonic Structures (Adv. Mater. 6/2011). Advanced Materials, 2011, 23, 684-684.	11.1	2
74	Dichroic Optical Structures: Selective Dichroic Patterning by Nanosecond Laser Treatment of Ag Nanostripes (Adv. Mater. 7/2011). Advanced Materials, 2011, 23, 800-800.	11.1	0
75	Enhanced Photoactivity in Bilayer Films with Buried Rutile–Anatase Heterojunctions. ChemPhysChem, 2011, 12, 191-196.	1.0	23
76	Tunable In-Plane Optical Anisotropy of Ag Nanoparticles Deposited by DC Sputtering onto SiO2 Nanocolumnar Films. Plasmonics, 2010, 5, 241-250.	1.8	18
77	Air- and Light-Stable Superhydrophobic Colored Surfaces Based on Supported Organic Nanowires. Langmuir, 2010, 26, 1487-1492.	1.6	21
78	One-Step Dry Method for the Synthesis of Supported Single-Crystalline Organic Nanowires Formed by Ï€-Conjugated Molecules. Langmuir, 2010, 26, 5763-5771.	1.6	36
79	Tunable Nanostructure and Photoluminescence of Columnar ZnO Films Grown by Plasma Deposition. Journal of Physical Chemistry C, 2010, 114, 20932-20940.	1.5	30
80	Wetting Properties of Polycrystalline TiO ₂ Surfaces: A Scaling Approach to the Roughness Factors. Langmuir, 2010, 26, 15875-15882.	1.6	37
81	Connecting Organic Nanowires. Advanced Materials, 2009, 21, 4816-4819.	11.1	17
82	Luminescent and Optical Properties of Nanocomposite Thin Films Deposited by Remote Plasma Polymerization of Rhodamine 6G. Plasma Processes and Polymers, 2009, 6, 17-26.	1.6	16
83	Porosity and microstructure of plasma deposited TiO2 thin films. Microporous and Mesoporous Materials, 2009, 118, 314-324.	2.2	42
84	Fabrication of ordered crystalline zirconium nanoporous membranes by an one-step procedure. Nano Today, 2009, 4, 21-26.	6.2	9
85	Chemical State of Nitrogen and Visible Surface and Schottky Barrier Driven Photoactivities of N-Doped TiO ₂ Thin Films. Journal of Physical Chemistry C, 2009, 113, 13341-13351.	1.5	63
86	Wetting Angles on Illuminated Ta2O5 Thin Films with Controlled Nanostructure. Journal of Physical Chemistry C, 2009, 113, 3775-3784.	1.5	29
87	Growth of Crystalline TiO2 by Plasma Enhanced Chemical Vapor Deposition. Crystal Growth and Design, 2009, 9, 2868-2876.	1.4	54
88	Optically Active Luminescent Perylene Thin Films Deposited by Plasma Polymerization. Journal of Physical Chemistry C, 2009, 113, 431-438.	1.5	37
89	Preillumination of TiO2 and Ta2O5 Photoactive Thin Films As a Tool to Tailor the Synthesis of Composite Materials. Langmuir, 2008, 24, 9460-9469.	1.6	37
90	Reversible Superhydrophobic to Superhydrophilic Conversion of Ag@TiO2 Composite Nanofiber Surfaces. Langmuir, 2008, 24, 8021-8026.	1.6	87

ANA BORRAS

#	Article	IF	CITATIONS
91	Synthesis of Supported Single-Crystalline Organic Nanowires by Physical Vapor Deposition. Chemistry of Materials, 2008, 20, 7371-7373.	3.2	40
92	Type of Plasmas and Microstructures of TiO[sub 2] Thin Films Prepared by Plasma Enhanced Chemical Vapor Deposition. Journal of the Electrochemical Society, 2007, 154, P152.	1.3	56
93	Relationship between scaling behavior and porosity of plasma-deposited <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub>films. Physical Review B. 2007. 76</mml:mrow></mml:math 	nrow> <td>ni:math>thi</td>	ni:math>thi
94	Effect of Visible and UV Illumination on the Water Contact Angle of TiO2Thin Films with Incorporated Nitrogen. Journal of Physical Chemistry C, 2007, 111, 1801-1808.	1.5	71
95	Synthesis of undoped and Ni doped InTaO4 photoactive thin films by metal organic chemical vapor deposition. Surface and Coatings Technology, 2007, 201, 9365-9368.	2.2	6
96	Factors that Contribute to the Growth of Ag@TiO ₂ Nanofibers by Plasma Deposition. Plasma Processes and Polymers, 2007, 4, 515-527.	1.6	25
97	Supported Ag–TiO2core–shell nanofibres formed at low temperature by plasma deposition. Nanotechnology, 2006, 17, 3518-3522.	1.3	28
98	Effect of visible light on the water contact angles on illuminated oxide semiconductors other than TiO2. Solar Energy Materials and Solar Cells, 2006, 90, 2944-2949.	3.0	47
99	Design and control of porosity in oxide thin films grown by PECVD. Journal of Materials Science, 2006, 41, 5220-5226.	1.7	35
100	Rhodamine 6G and 800 intermolecular heteroaggregates embedded in PMMA for Near-Infrared wavelength shifting. Journal of Materials Chemistry C, 0, , .	2.7	0