Karin I Ã-berg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1819927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First Images of Phosphorus Molecules toward a Protosolar Analog. Astrophysical Journal, 2022, 927, 7.	1.6	4
2	Disk Evolution Study through Imaging of Nearby Young Stars (DESTINYS): A Panchromatic View of DO Tau's Complex Kilo-astronomical-unit Environment. Astrophysical Journal, 2022, 930, 171.	1.6	7
3	Gas Disk Sizes from CO Line Observations: A Test of Angular Momentum Evolution. Astrophysical Journal, 2022, 931, 6.	1.6	25
4	CO Line Emission Surfaces and Vertical Structure in Midinclination Protoplanetary Disks. Astrophysical Journal, 2022, 932, 114.	1.6	21
5	HCN Snow Lines in Protoplanetary Disks: Constraints from Ice Desorption Experiments. Astrophysical Journal, 2022, 933, 206.	1.6	7
6	Astrochemistry and compositions of planetary systems. Physics Reports, 2021, 893, 1-48.	10.3	128
7	The TW Hya Rosetta Stone Project. II. Spatially Resolved Emission of Formaldehyde Hints at Low-temperature Gas-phase Formation. Astrophysical Journal, 2021, 906, 111.	1.6	19
8	The TW Hya Rosetta Stone Project. III. Resolving the Gaseous Thermal Profile of the Disk. Astrophysical Journal, 2021, 908, 8.	1.6	35
9	Dynamical Masses and Stellar Evolutionary Model Predictions of M Stars. Astrophysical Journal, 2021, 908, 42.	1.6	14
10	Subarcsecond Imaging of the Complex Organic Chemistry in Massive Star-forming Region G10.6-0.4. Astrophysical Journal, 2021, 909, 214.	1.6	21
11	Exploring HNC and HCN line emission as probes of the protoplanetary disk temperature. Astronomy and Astrophysics, 2021, 647, A118.	2.1	10
12	An Atacama Large Millimeter/submillimeter Array Survey of Chemistry in Disks around M4–M5 Stars. Astrophysical Journal, 2021, 911, 150.	1.6	6
13	The TW Hya Rosetta Stone Project IV: A Hydrocarbon-rich Disk Atmosphere. Astrophysical Journal, 2021, 911, 29.	1.6	10
14	Ice-coated Pebble Drift as a Possible Explanation for Peculiar Cometary CO/H ₂ O Ratios. Astrophysical Journal, 2021, 913, 9.	1.6	10
15	Tracers of the ionization fraction in dense and translucent gas. Astronomy and Astrophysics, 2021, 645, A28.	2.1	11
16	The TW Hya Rosetta Stone Project. I. Radial and Vertical Distributions of DCN and DCO ⁺ . Astronomical Journal, 2021, 161, 38.	1.9	16
17	Mapping the 3D Kinematical Structure of the Gas Disk of HD 169142. Astrophysical Journal Letters, 2021, 920, L33.	3.0	19
18	Carbon monoxide gas produced by a giant impact in the inner region of a young system. Nature, 2021, 598, 425-428.	13.7	8

#	Article	IF	CITATIONS
19	A Deep Search for Five Molecules in the 49 Ceti Debris Disk. Astrophysical Journal, 2021, 921, 56.	1.6	3
20	Molecules with ALMA at Planet-forming Scales (MAPS). VII. Substellar O/H and C/H and Superstellar C/O in Planet-feeding Gas. Astrophysical Journal, Supplement Series, 2021, 257, 7.	3.0	40
21	Molecules with ALMA at Planet-forming Scales (MAPS). X. Studying Deuteration at High Angular Resolution toward Protoplanetary Disks. Astrophysical Journal, Supplement Series, 2021, 257, 10.	3.0	15
22	Molecules with ALMA at Planet-forming Scales (MAPS). XVIII. Kinematic Substructures in the Disks of HD 163296 and MWC 480. Astrophysical Journal, Supplement Series, 2021, 257, 18.	3.0	51
23	Molecules with ALMA at Planet-forming Scales (MAPS). IX. Distribution and Properties of the Large Organic Molecules HC ₃ N, CH ₃ CN, and c-C ₃ H ₂ . Astrophysical Journal, Supplement Series, 2021, 257, 9.	3.0	30
24	Molecules with ALMA at Planet-forming Scales (MAPS). XIX. Spiral Arms, a Tail, and Diffuse Structures Traced by CO around the GM Aur Disk. Astrophysical Journal, Supplement Series, 2021, 257, 19.	3.0	33
25	Molecules with ALMA at Planet-forming Scales (MAPS). IV. Emission Surfaces and Vertical Distribution of Molecules. Astrophysical Journal, Supplement Series, 2021, 257, 4.	3.0	58
26	Molecules with ALMA at Planet-forming Scales (MAPS). XII. Inferring the C/O and S/H Ratios in Protoplanetary Disks with Sulfur Molecules. Astrophysical Journal, Supplement Series, 2021, 257, 12.	3.0	30
27	Molecules with ALMA at Planet-forming Scales (MAPS). XVII. Determining the 2D Thermal Structure of the HD 163296 Disk. Astrophysical Journal, Supplement Series, 2021, 257, 17.	3.0	19
28	Molecules with ALMA at Planet-forming Scales (MAPS). I. Program Overview and Highlights. Astrophysical Journal, Supplement Series, 2021, 257, 1.	3.0	117
29	Molecules with ALMA at Planet-forming Scales (MAPS). VI. Distribution of the Small Organics HCN, C ₂ H, and H ₂ CO. Astrophysical Journal, Supplement Series, 2021, 257, 6.	3.0	37
30	Molecules with ALMA at Planet-forming Scales (MAPS). XVI. Characterizing the Impact of the Molecular Wind on the Evolution of the HD 163296 System. Astrophysical Journal, Supplement Series, 2021, 257, 16.	3.0	20
31	Molecules with ALMA at Planet-forming Scales (MAPS). V. CO Gas Distributions. Astrophysical Journal, Supplement Series, 2021, 257, 5.	3.0	87
32	Molecules with ALMA at Planet-forming Scales (MAPS). III. Characteristics of Radial Chemical Substructures. Astrophysical Journal, Supplement Series, 2021, 257, 3.	3.0	57
33	Molecules with ALMA at Planet-forming Scales (MAPS). XV. Tracing Protoplanetary Disk Structure within 20 au. Astrophysical Journal, Supplement Series, 2021, 257, 15.	3.0	21
34	Molecules with ALMA at Planet-forming Scales (MAPS). VIII. CO Gap in AS 209—Gas Depletion or Chemical Processing?. Astrophysical Journal, Supplement Series, 2021, 257, 8.	3.0	22
35	Molecules with ALMA at Planet-forming Scales (MAPS). XIII. HCO ⁺ and Disk Ionization Structure. Astrophysical Journal, Supplement Series, 2021, 257, 13.	3.0	24
36	Molecules with ALMA at Planet-forming Scales (MAPS). XIV. Revealing Disk Substructures in Multiwavelength Continuum Emission. Astrophysical Journal, Supplement Series, 2021, 257, 14.	3.0	56

#	Article	IF	CITATIONS
37	Molecules with ALMA at Planet-forming Scales. XX. The Massive Disk around GM Aurigae. Astrophysical Journal, Supplement Series, 2021, 257, 20.	3.0	26
38	Molecules with ALMA at Planet-forming Scales (MAPS). II. CLEAN Strategies for Synthesizing Images of Molecular Line Emission in Protoplanetary Disks. Astrophysical Journal, Supplement Series, 2021, 257, 2.	3.0	58
39	The First Detection of CH ₂ CN in a Protoplanetary Disk. Astrophysical Journal, 2021, 922, 62.	1.6	6
40	Molecules with ALMA at Planet-forming Scales (MAPS). XI. CN and HCN as Tracers of Photochemistry in Disks. Astrophysical Journal, Supplement Series, 2021, 257, 11.	3.0	25
41	Hot Corino Chemistry in the Class I Binary Source Ser-emb 11. Astrophysical Journal, 2021, 923, 155.	1.6	8
42	Cometary Delivery of Hydrogen Cyanide to the Early Earth. Astrobiology, 2020, 20, 1109-1120.	1.5	32
43	An Unbiased ALMA Spectral Survey of the LkCa 15 and MWC 480 Protoplanetary Disks. Astrophysical Journal, 2020, 893, 101.	1.6	38
44	A Multifrequency ALMA Characterization of Substructures in the GM Aur Protoplanetary Disk. Astrophysical Journal, 2020, 891, 48.	1.6	54
45	Formation of NH ₂ CHO and CH ₃ CHO upon UV Photoprocessing of Interstellar Ice Analogs. Astrophysical Journal, 2020, 894, 98.	1.6	29
46	Chemistry Along Accretion Streams in a Viscously Evolving Protoplanetary Disk. Astrophysical Journal, 2020, 890, 154.	1.6	6
47	An ALMA Survey of H ₂ CO in Protoplanetary Disks. Astrophysical Journal, 2020, 890, 142.	1.6	47
48	An Evolutionary Study of Volatile Chemistry in Protoplanetary Disks. Astrophysical Journal, 2020, 898, 97.	1.6	34
49	A 3 mm Chemical Exploration of Small Organics in Class I YSOs. Astrophysical Journal, 2020, 898, 131.	1.6	10
50	Large-scale CO Spiral Arms and Complex Kinematics Associated with the T Tauri Star RU Lup. Astrophysical Journal, 2020, 898, 140.	1.6	23
51	Exploring the Chemistry Induced by Energetic Processing of the H2-bearing, CO-rich Apolar Ice Layer. Astrophysical Journal, 2020, 902, 116.	1.6	7
52	The REASONS Survey: Resolved Millimeter Observations of a Large Debris Disk around the Nearby F Star HD 170773. Astrophysical Journal, 2019, 881, 84.	1.6	15
53	Sulfur Chemistry in Protoplanetary Disks: CS and H ₂ CS. Astrophysical Journal, 2019, 876, 72.	1.6	62
54	Organic Complexity in Protostellar Disk Candidates. ACS Earth and Space Chemistry, 2019, 3, 1564-1575.	1.2	21

#	Article	IF	CITATIONS
55	Jupiter's Composition Suggests its Core Assembled Exterior to the N ₂ Snowline. Astronomical Journal, 2019, 158, 194.	1.9	75
56	Entrapment of CO in CO ₂ Ice. Astrophysical Journal, 2019, 883, 21.	1.6	11
57	A New, Rotating Hot Corino in Serpens. Astrophysical Journal, 2019, 880, 130.	1.6	14
58	Probing the Gas Content of Late-stage Protoplanetary Disks with N ₂ H ⁺ . Astrophysical Journal, 2019, 881, 127.	1.6	20
59	Probing CO and N ₂ Snow Surfaces in Protoplanetary Disks with N ₂ H ⁺ Emission. Astrophysical Journal, 2019, 882, 160.	1.6	47
60	Unlocking CO Depletion in Protoplanetary Disks. II. Primordial C/H Predictions inside the CO Snowline. Astrophysical Journal, 2019, 877, 131.	1.6	27
61	Chemical Network Reduction in Protoplanetary Disks. Astrophysical Journal, 2019, 872, 107.	1.6	9
62	A Survey of C ₂ H, HCN, and C ¹⁸ O in Protoplanetary Disks. Astrophysical Journal, 2019, 876, 25.	1.6	66
63	Desorption Kinetics and Binding Energies of Small Hydrocarbons. Astrophysical Journal, 2019, 875, 73.	1.6	17
64	On the Ubiquity and Stellar Luminosity Dependence of Exocometary CO Gas: Detection around M Dwarf TWA 7. Astronomical Journal, 2019, 157, 117.	1.9	36
65	Oxygen Atom Reactions with C ₂ H ₆ , C ₂ H ₄ , and C ₂ H ₂ in Ices. Astrophysical Journal, 2019, 874, 115.	1.6	27
66	Formation of NH ₂ CHO and CH ₃ CHO upon UV processing of interstellar ice analogs. Proceedings of the International Astronomical Union, 2019, 15, 417-419.	0.0	0
67	The Role of C/O in Nitrile Astrochemistry in PDRs and Planet-forming Disks. Astrophysical Journal, 2019, 886, 86.	1.6	33
68	Detection of Phosphorus-bearing Molecules toward a Solar-type Protostar. Astrophysical Journal Letters, 2019, 884, L36.	3.0	27
69	A dynamically young, gravitationally stable network of filaments in Orion B. Astronomy and Astrophysics, 2019, 624, A113.	2.1	25
70	A Survey of CH ₃ CN and HC ₃ N in Protoplanetary Disks. Astrophysical Journal, 2018, 857, 69.	1.6	82
71	Unlocking CO Depletion in Protoplanetary Disks. I. The Warm Molecular Layer. Astrophysical Journal, 2018, 856, 85.	1.6	82
72	Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering. Astronomical Journal, 2018, 155, 182.	1.9	56

#	Article	IF	CITATIONS
73	CO Diffusion and Desorption Kinetics in CO ₂ Ices. Astrophysical Journal, 2018, 852, 75.	1.6	20
74	CO and Dust Properties in the TW Hya Disk from High-resolution ALMA Observations. Astrophysical Journal, 2018, 852, 122.	1.6	127
75	The Disk Substructures at High Angular Resolution Project (DSHARP). X. Multiple Rings, a Misaligned Inner Disk, and a Bright Arc in the Disk around the T Tauri star HD 143006. Astrophysical Journal Letters, 2018, 869, L50.	3.0	69
76	A Subarcsecond ALMA Molecular Line Imaging Survey of the Circumbinary, Protoplanetary Disk Orbiting V4046 Sgr. Astrophysical Journal, 2018, 863, 106.	1.6	40
77	The Distribution and Excitation of CH ₃ CN in a Solar Nebula Analog. Astrophysical Journal, 2018, 859, 131.	1.6	65
78	The Disk Substructures at High Angular Resolution Program (DSHARP). VIII. The Rich Ringed Substructures in the AS 209 Disk. Astrophysical Journal Letters, 2018, 869, L48.	3.0	58
79	The Disk Substructures at High Angular Resolution Project (DSHARP). II. Characteristics of Annular Substructures. Astrophysical Journal Letters, 2018, 869, L42.	3.0	326
80	The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview. Astrophysical Journal Letters, 2018, 869, L41.	3.0	732
81	The Disk Substructures at High Angular Resolution Project (DSHARP). III. Spiral Structures in the Millimeter Continuum of the Elias 27, IM Lup, and WaOph 6 Disks. Astrophysical Journal Letters, 2018, 869, L43.	3.0	121
82	Clustering the Orion B giant molecular cloud based on its molecular emission. Astronomy and Astrophysics, 2018, 610, A12.	2.1	22
83	Constraining Gas-phase Carbon, Oxygen, and Nitrogen in the IM Lup Protoplanetary Disk. Astrophysical Journal, 2018, 865, 155.	1.6	69
84	H ₂ CO Ortho-to-para Ratio in the Protoplanetary Disk HD 163296. Astrophysical Journal, 2018, 864, 170.	1.6	17
85	An Empirical Planetesimal Belt Radius–Stellar Luminosity Relation. Astrophysical Journal, 2018, 859, 72.	1.6	66
86	Molecular Reconnaissance of the β Pictoris Gas Disk with the SMA: A Low HCN/(CO+CO ₂) Outgassing Ratio and Predictions for Future Surveys. Astrophysical Journal, 2018, 853, 147.	1.6	39
87	Carbon Chain Molecules toward Embedded Low-mass Protostars ^{â^—} . Astrophysical Journal, 2018, 863, 88.	1.6	16
88	Nitrogen Fractionation in Protoplanetary Disks from the H ¹³ CN/HC ¹⁵ N Ratio. Astrophysical Journal, 2017, 836, 30.	1.6	44
89	Turbulent-diffusion Mediated CO Depletion in Weakly Turbulent Protoplanetary Disks. Astrophysical Journal, 2017, 835, 162.	1.6	31
90	H ₂ CO Distribution and Formation in the TW HYA Disk. Astrophysical Journal, 2017, 839, 43.	1.6	38

#	Article	IF	CITATIONS
91	A Multi-ringed, Modestly Inclined Protoplanetary Disk around AA Tau. Astrophysical Journal, 2017, 840, 23.	1.6	112
92	Dissecting the molecular structure of the Orion B cloud: insight from principal component analysis. Astronomy and Astrophysics, 2017, 599, A100.	2.1	37
93	Complex Organic Molecules toward Embedded Low-mass Protostars ^{â^—} . Astrophysical Journal, 2017, 841, 120.	1.6	49
94	The anatomy of the Orion B giant molecular cloud: A local template for studies of nearby galaxies. Astronomy and Astrophysics, 2017, 599, A98.	2.1	135
95	Turbulence and star formation efficiency in molecular clouds: solenoidal versus compressive motions in Orion B. Astronomy and Astrophysics, 2017, 599, A99.	2.1	71
96	Protostellar and cometary detections of organohalogens. Nature Astronomy, 2017, 1, 703-708.	4.2	89
97	Methanol Formation via Oxygen Insertion Chemistry in Ices. Astrophysical Journal, 2017, 845, 29.	1.6	35
98	An ALMA Survey of DCN/H ¹³ CN and DCO ⁺ /H ¹³ CO ⁺ in Protoplanetary Disks. Astrophysical Journal, 2017, 835, 231.	1.6	87
99	Variable H ¹³ CO ⁺ Emission in the IM Lup Disk: X-Ray Driven Time-dependent Chemistry?. Astrophysical Journal Letters, 2017, 843, L3.	3.0	44
100	MASS MEASUREMENTS IN PROTOPLANETARY DISKS FROM HYDROGEN DEUTERIDE. Astrophysical Journal, 2016, 831, 167.	1.6	151
101	THE COUPLED PHYSICAL STRUCTURE OF GAS AND DUST IN THE IM Lup PROTOPLANETARY DISK. Astrophysical Journal, 2016, 832, 110.	1.6	130
102	THE RADIAL DISTRIBUTION OF H ₂ AND CO IN TW HYA AS REVEALED BY RESOLVED ALMA OBSERVATIONS OF CO ISOTOPOLOGUES. Astrophysical Journal, 2016, 823, 91.	1.6	163
103	EVIDENCE FOR A CO DESORPTION FRONT IN THE OUTER AS 209 DISK. Astrophysical Journal Letters, 2016, 823, L18.	3.0	48
104	THE ROLE OF ICE COMPOSITIONS FOR SNOWLINES AND THE C/N/O RATIOS IN ACTIVE DISKS. Astrophysical Journal, 2016, 833, 203.	1.6	76
105	EXCESS C/O AND C/H IN OUTER PROTOPLANETARY DISK GAS. Astrophysical Journal Letters, 2016, 831, L19.	3.0	78
106	Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules. Chemical Reviews, 2016, 116, 9631-9663.	23.0	321
107	CO ₂ INFRARED PHONON MODES IN INTERSTELLAR ICE MIXTURES. Astrophysical Journal, 2016, 832, 5.	1.6	18
108	CARBON CHAINS AND METHANOL TOWARD EMBEDDED PROTOSTARS*. Astrophysical Journal, 2016, 819, 140.	1.6	34

#	Article	IF	CITATIONS
109	KINETICS AND MECHANISMS OF THE ACID-BASE REACTION BETWEEN NH ₃ AND HCOOH IN INTERSTELLAR ICE ANALOGS. Astrophysical Journal, 2016, 829, 85.	1.6	18
110	ON THE INFERENCE OF THE COSMIC-RAY IONIZATION RATE ζ FROM THE HCO ⁺ -to-DCO ⁺ ABUNDANCE RATIO: THE EFFECT OF NUCLEAR SPIN. Astrophysical Journal, 2016, 830, 151.	1.6	15
111	FIRST DETECTION OF GAS-PHASE METHANOL IN A PROTOPLANETARY DISK. Astrophysical Journal Letters, 2016, 823, L10.	3.0	166
112	RINGED SUBSTRUCTURE AND A GAP AT 1 au IN THE NEAREST PROTOPLANETARY DISK. Astrophysical Journal Letters, 2016, 820, L40.	3.0	418
113	N ₂ AND CO DESORPTION ENERGIES FROM WATER ICE. Astrophysical Journal Letters, 2016, 816, L28.	3.0	76
114	EXPLORING THE ORIGINS OF DEUTERIUM ENRICHMENTS IN SOLAR NEBULAR ORGANICS. Astrophysical Journal, 2016, 819, 13.	1.6	43
115	The Chemistry of Nearby Disks. Proceedings of the International Astronomical Union, 2015, 10, 143-148.	0.0	0
116	CHEMICAL IMAGING OF THE CO SNOW LINE IN THE HD 163296 DISK. Astrophysical Journal, 2015, 813, 128.	1.6	111
117	DOUBLE DCO ⁺ RINGS REVEAL CO ICE DESORPTION IN THE OUTER DISK AROUND IM LUP. Astrophysical Journal, 2015, 810, 112.	1.6	83
118	HNC IN PROTOPLANETARY DISKS. Astrophysical Journal Letters, 2015, 807, L15.	3.0	24
119	C/O AND SNOWLINE LOCATIONS IN PROTOPLANETARY DISKS: THE EFFECT OF RADIAL DRIFT AND VISCOUS GAS ACCRETION. Astrophysical Journal, 2015, 815, 109.	1.6	89
120	Ice-gas interactions during planet formation. Proceedings of the International Astronomical Union, 2015, 11, 267-270.	0.0	0
121	Laboratory constraints on ice formation, restructuring and desorption. Proceedings of the International Astronomical Union, 2015, 11, 309-312.	0.0	0
122	CYANIDE PHOTOCHEMISTRY AND NITROGEN FRACTIONATION IN THE MWC 480 DISK. Astrophysical Journal, 2015, 814, 53.	1.6	30
123	CONSTRAINING THE X-RAY AND COSMIC-RAY IONIZATION CHEMISTRY OF THE TW Hya PROTOPLANETARY DISK: EVIDENCE FOR A SUB-INTERSTELLAR COSMIC-RAY RATE. Astrophysical Journal, 2015, 799, 204.	1.6	151
124	The comet-like composition of a protoplanetary disk as revealed by complex cyanides. Nature, 2015, 520, 198-201.	13.7	192
125	CO DIFFUSION INTO AMORPHOUS H ₂ O ICES. Astrophysical Journal, 2015, 801, 118.	1.6	63
126	A RING OF C ₂ H IN THE MOLECULAR DISK ORBITING TW Hya. Astrophysical Journal, 2015, 806, 75.	1.6	38

#	Article	IF	CITATIONS
127	THE DISTRIBUTION AND CHEMISTRY OF H ₂ CO IN THE DM TAU PROTOPLANETARY DISK. Astrophysical Journal Letters, 2015, 809, L25.	3.0	48
128	DETECTION OF N ₂ D ⁺ IN A PROTOPLANETARY DISK. Astrophysical Journal Letters, 2015, 809, L26.	3.0	17
129	Complex organic molecules in organic-poor massive young stellar objects. Astronomy and Astrophysics, 2015, 576, A45.	2.1	35
130	G11.92–0.61-MM2: A BONAFIDE MASSIVE PRESTELLAR CORE?. Astrophysical Journal Letters, 2014, 796, L2.	3.0	40
131	THE HNC/HCN RATIO IN STAR-FORMING REGIONS. Astrophysical Journal, 2014, 787, 74.	1.6	83
132	COMPLEX ORGANIC MOLECULES DURING LOW-MASS STAR FORMATION: PILOT SURVEY RESULTS. Astrophysical Journal, 2014, 788, 68.	1.6	28
133	Complex molecule formation around massive young stellar objects. Faraday Discussions, 2014, 168, 81-101.	1.6	19
134	The ancient heritage of water ice in the solar system. Science, 2014, 345, 1590-1593.	6.0	229
135	Imaging of the CO Snow Line in a Solar Nebula Analog. Science, 2013, 341, 630-632.	6.0	252
136	An old disk still capable of forming a planetary system. Nature, 2013, 493, 644-646.	13.7	285
137	INDIRECT ULTRAVIOLET PHOTODESORPTION FROM CO:N ₂ BINARY ICES — AN EFFICIENT GRAIN-GAS PROCESS. Astrophysical Journal, 2013, 779, 120.	1.6	77
138	FIRST DETECTION OF <i>c</i> -C ₃ H ₂ IN A CIRCUMSTELLAR DISK. Astrophysical Journal Letters, 2013, 765, L14.	3.0	68
139	THE SPATIAL DISTRIBUTION OF ORGANICS TOWARD THE HIGH-MASS YSO NGC 7538 IRS9. Astrophysical Journal, 2013, 771, 95.	1.6	32
140	H ₂ CO AND N ₂ H ⁺ IN PROTOPLANETARY DISKS: EVIDENCE FOR A CO-ICE REGULATED CHEMISTRY. Astrophysical Journal, 2013, 765, 34.	1.6	81
141	UV photodesorption of interstellar CO ice analogues: from subsurface excitation to surface desorption. Physical Chemistry Chemical Physics, 2012, 14, 9929.	1.3	74
142	EVIDENCE FOR MULTIPLE PATHWAYS TO DEUTERIUM ENHANCEMENTS IN PROTOPLANETARY DISKS. Astrophysical Journal, 2012, 749, 162.	1.6	40
143	THE TW Hya DISK AT 870 μm: COMPARISON OF CO AND DUST RADIAL STRUCTURES. Astrophysical Journal, 2012, 744, 162.	1.6	230
144	THE IONIZATION FRACTION IN THE DM Tau PROTOPLANETARY DISK. Astrophysical Journal, 2011, 743, 152.	1.6	37

#	Article	IF	CITATIONS
145	Ices in Starless and Starforming Cores. Proceedings of the International Astronomical Union, 2011, 7, 65-78.	0.0	8
146	THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES. Astrophysical Journal Letters, 2011, 743, L16.	3.0	611
147	RESOLVING THE CO SNOW LINE IN THE DISK AROUND HD 163296. Astrophysical Journal, 2011, 740, 84.	1.6	111
148	DISK IMAGING SURVEY OF CHEMISTRY WITH SMA. II. SOUTHERN SKY PROTOPLANETARY DISK DATA AND FULL SAMPLE STATISTICS. Astrophysical Journal, 2011, 734, 98.	1.6	128
149	THE <i>SPITZER</i> ICE LEGACY: ICE EVOLUTION FROM CORES TO PROTOSTARS. Astrophysical Journal, 2011, 740, 109.	1.6	423
150	CO ICE PHOTODESORPTION: A WAVELENGTH-DEPENDENT STUDY. Astrophysical Journal Letters, 2011, 739, L36.	3.0	138
151	A COLD COMPLEX CHEMISTRY TOWARD THE LOW-MASS PROTOSTAR B1-b: EVIDENCE FOR COMPLEX MOLECULE PRODUCTION IN ICES. Astrophysical Journal, 2010, 716, 825-834.	1.6	156
152	THE c2d <i>SPITZER</i> SPECTROSCOPIC SURVEY OF ICES AROUND LOW-MASS YOUNG STELLAR OBJECTS. IV. NH ₃ AND CH ₃ OH. Astrophysical Journal, 2010, 718, 1100-1117.	1.6	136
153	THE EFFECT OF H ₂ O ON ICE PHOTOCHEMISTRY. Astrophysical Journal, 2010, 718, 832-840.	1.6	67
154	THE DISK IMAGING SURVEY OF CHEMISTRY WITH SMA. I. TAURUS PROTOPLANETARY DISK DATA. Astrophysical Journal, 2010, 720, 480-493.	1.6	128
155	PHOTODESORPTION OF ICES. II. H ₂ O AND D ₂ O. Astrophysical Journal, 2009, 693, 1209-1218.	1.6	254
156	Photodesorption of ices – Releasing organic precursors into the gas phase. Proceedings of the International Astronomical Union, 2008, 4, 449-450.	0.0	1
157	Photodesorption of CO Ice. Astrophysical Journal, 2007, 662, L23-L26.	1.6	166
158	Comparative studies of O2and N2in pure, mixed and layered CO ices. Faraday Discussions, 2006, 133, 331-345.	1.6	43
159	Simple optical sensor for amine vapors based on dyed silica microspheres. Sensors and Actuators B: Chemical, 2006, 115, 79-85.	4.0	53