List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1819544/publications.pdf Version: 2024-02-01

FEIRO R M/II

#	Article	IF	CITATIONS
1	The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 2011, 159, 84-91.	3.7	970
2	Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany, 2003, 50, 67-78.	2.0	322
3	Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Journal of Hazardous Materials, 2012, 235-236, 343-351.	6.5	259
4	Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiology and Biochemistry, 2010, 48, 663-672.	2.8	249
5	Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere, 2006, 64, 1659-1666.	4.2	244
6	Subcellular distribution and chemical form of Cd and Cd–Zn interaction in different barley genotypes. Chemosphere, 2005, 60, 1437-1446.	4.2	228
7	Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 2013, 63, 49-60.	2.8	219
8	Tissue Metabolic Responses to Salt Stress in Wild and Cultivated Barley. PLoS ONE, 2013, 8, e55431.	1.1	186
9	Effects of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant and Soil, 2004, 258, 241-248.	1.8	157
10	Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environmental Pollution, 2008, 153, 309-314.	3.7	154
11	Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. Journal of Hazardous Materials, 2012, 209-210, 121-128.	6.5	151
12	Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5015-5020.	3.3	138
13	Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress. Environmental Pollution, 2008, 155, 284-289.	3.7	131
14	Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environmental and Experimental Botany, 2015, 111, 1-12.	2.0	129
15	Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theoretical and Applied Genetics, 2011, 122, 695-703.	1.8	123
16	Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. Journal of Plant Nutrition and Soil Science, 2005, 168, 255-261.	1.1	121
17	Comparison of Biochemical, Anatomical, Morphological, and Physiological Responses to Salinity Stress in Wheat and Barley Genotypes Deferring in Salinity Tolerance. Agronomy, 2020, 10, 127.	1.3	119
18	Difference in Yield and Physiological Features in Response to Drought and Salinity Combined Stress during Anthesis in Tibetan Wild and Cultivated Barleys. PLoS ONE, 2013, 8, e77869.	1.1	116

#	Article	lF	CITATIONS
19	Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere, 2004, 57, 447-454.	4.2	107
20	Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. Chemosphere, 2007, 67, 2082-2088.	4.2	102
21	Difference in response to drought stress among Tibet wild barley genotypes. Euphytica, 2010, 172, 395-403.	0.6	101
22	Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genomics, 2014, 15, 611.	1.2	101
23	<i>HvEXPB7</i> , a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. Journal of Experimental Botany, 2015, 66, 7405-7419.	2.4	94
24	Effect of cadmium on growth and photosynthesis of tomato seedlings. Journal of Zhejiang University Science B, 2005, 6B, 974-980.	0.4	91
25	Comparison of EDTA- and Citric Acid-Enhanced Phytoextraction of Heavy Metals in Artificially Metal Contaminated Soil by <i>Typha Angustifolia</i> . International Journal of Phytoremediation, 2009, 11, 558-574.	1.7	90
26	Subcellular distribution and chemical forms of chromium in rice plants suffering from different levels of chromium toxicity. Journal of Plant Nutrition and Soil Science, 2011, 174, 249-256.	1.1	89
27	Genotype-Dependent Effect of Exogenous Nitric Oxide on Cd-induced Changes in Antioxidative Metabolism, Ultrastructure, and Photosynthetic Performance in Barley Seedlings (Hordeum vulgare). Journal of Plant Growth Regulation, 2010, 29, 394-408.	2.8	88
28	The changes of β-glucan content and β-glucanase activity in barley before and after malting and their relationships to malt qualities. Food Chemistry, 2004, 86, 223-228.	4.2	87
29	The ecotoxicological and interactive effects of chromium and aluminum on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in Al tolerance. Environmental and Experimental Botany, 2011, 70, 185-191.	2.0	84
30	Differences in photosynthesis, yield and grain cadmium accumulation as affected by exogenous cadmium and glutathione in the two rice genotypes. Plant Growth Regulation, 2015, 75, 715-723.	1.8	84
31	Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation. Science of the Total Environment, 2014, 496, 275-281.	3.9	81
32	Glutathione-Mediated Alleviation of Chromium Toxicity in Rice Plants. Biological Trace Element Research, 2012, 148, 255-263.	1.9	79
33	Modulation of Exogenous Glutathione in Ultrastructure and Photosynthetic Performance Against Cd Stress in the Two Barley Genotypes Differing in Cd Tolerance. Biological Trace Element Research, 2011, 144, 1275-1288.	1.9	78
34	Modulation of Exogenous Glutathione in Phytochelatins and Photosynthetic Performance Against Cd Stress in the Two Rice Genotypes Differing in Cd Tolerance. Biological Trace Element Research, 2011, 143, 1159-1173.	1.9	76
35	Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Proceedings of the United States of America, 2014, 111, 13403-13408.	3.3	74
36	Comparative proteomic analysis of Typha angustifolia leaf under chromium, cadmium and lead stress. Journal of Hazardous Materials, 2010, 184, 191-203.	6.5	72

#	Article	IF	CITATIONS
37	Genotypic dependent effect of exogenous glutathione on Cd-induced changes in proteins, ultrastructure and antioxidant defense enzymes in rice seedlings. Journal of Hazardous Materials, 2011, 192, 1056-1066.	6.5	72
38	Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley. Plant Growth Regulation, 2015, 75, 567-574.	1.8	71
39	Genotypic differences in leaf secondary metabolism, plant hormones and yield under alone and combined stress of drought and salinity in cotton genotypes. Physiologia Plantarum, 2019, 165, 343-355.	2.6	71
40	Alleviation of Chromium Toxicity by Silicon Addition in Rice Plants. Agricultural Sciences in China, 2011, 10, 1188-1196.	0.6	70
41	Modulation of exogenous selenium in cadmiumâ€induced changes in antioxidative metabolism, cadmium uptake, and photosynthetic performance in the 2 tobacco genotypes differing in cadmium tolerance. Environmental Toxicology and Chemistry, 2015, 34, 92-99.	2.2	70
42	Alleviation of chromium toxicity in rice seedlings by applying exogenous glutathione. Journal of Plant Physiology, 2013, 170, 772-779.	1.6	67
43	Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress. Food Chemistry, 2013, 141, 2743-2750.	4.2	66
44	Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Physiologia Plantarum, 2019, 165, 134-143.	2.6	66
45	GENOTYPIC VARIATION IN KERNEL HEAVY METAL CONCENTRATIONS IN BARLEY AND AS AFFECTED BY SOIL FACTORS. Journal of Plant Nutrition, 2002, 25, 1163-1173.	0.9	64
46	ALLEVIATION OF CADMIUM-TOXICITY BY APPLICATION OF ZINC AND ASCORBIC ACID IN BARLEY. Journal of Plant Nutrition, 2002, 25, 2745-2761.	0.9	64
47	Differences in yield components and kernel Cd accumulation in response to Cd toxicity in four barley genotypes. Chemosphere, 2007, 70, 83-92.	4.2	64
48	Influence of Aluminum and Cadmium Stresses on Mineral Nutrition and Root Exudates in Two Barley Cultivars. Pedosphere, 2007, 17, 505-512.	2.1	63
49	Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress. Planta, 2014, 240, 291-308.	1.6	59
50	Identification of QTLs for yield and yield components of barley under different growth conditions. Journal of Zhejiang University: Science B, 2010, 11, 169-176.	1.3	58
51	Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. BMC Genomics, 2015, 16, 432.	1.2	57
52	Cadmium translocation and accumulation in developing barley grains. Planta, 2007, 227, 223-232.	1.6	54
53	HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H ⁺ homoeostasis. Plant Biotechnology Journal, 2020, 18, 1683-1696.	4.1	54
54	Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.). Environmental Pollution, 2021, 273, 116486.	3.7	54

#	Article	IF	CITATIONS
55	Interaction of Cadmium and Four Microelements for Uptake and Translocation in Different Barley Genotypes. Communications in Soil Science and Plant Analysis, 2003, 34, 2003-2020.	0.6	53
56	Comparative study of alleviating effects of CSH, Se and Zn under combined contamination of cadmium and chromium in rice (Oryza sativa). BioMetals, 2013, 26, 297-308.	1.8	50
57	Genomeâ€wide identification of chromium stressâ€responsive micro RNAs and their target genes in tobacco (<i>Nicotiana tabacum</i>) roots. Environmental Toxicology and Chemistry, 2015, 34, 2573-2582.	2.2	50
58	A Chromium-Tolerant Plant Growing in Cr-Contaminated Land. International Journal of Phytoremediation, 2007, 9, 167-179.	1.7	49
59	Effects of Cadmium, Chromium and Lead on Growth, Metal Uptake and Antioxidative Capacity in Typha angustifolia. Biological Trace Element Research, 2011, 142, 77-92.	1.9	48
60	Exogenous hydrogen sulfide reduces cadmium uptake and alleviates cadmium toxicity in barley. Plant Growth Regulation, 2019, 89, 227-237.	1.8	48
61	Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance. Physiologia Plantarum, 2019, 165, 155-168.	2.6	46
62	Genotypic Difference in the Responses of Seedling Growth and Cd Toxicity in Rice (Oryza sativa L.). Agricultural Sciences in China, 2006, 5, 68-76.	0.6	43
63	Identification of Barley Varieties Tolerant to Cadmium Toxicity. Biological Trace Element Research, 2008, 121, 171-179.	1.9	43
64	K+ Uptake, H+-ATPase pumping activity and Ca2+ efflux mechanism are involved in drought tolerance of barley. Environmental and Experimental Botany, 2016, 129, 57-66.	2.0	43
65	Development and Characterization of Polymorphic EST-SSR and Genomic SSR Markers for Tibetan Annual Wild Barley. PLoS ONE, 2014, 9, e94881.	1.1	42
66	Silicon regulates the expression of vacuolar H+-pyrophosphatase 1 and decreases cadmium accumulation in rice (Oryza sativa L.). Chemosphere, 2020, 240, 124907.	4.2	40
67	Identification and comparative analysis of the microRNA transcriptome in roots of two contrasting tobacco genotypes in response to cadmium stress. Scientific Reports, 2016, 6, 32805.	1.6	37
68	Differences in growth and yield in response to cadmium toxicity in cotton genotypes. Journal of Plant Nutrition and Soil Science, 2004, 167, 85-90.	1.1	36
69	Protein and hordein fraction content in barley seeds as affected by sowing date and their relations to malting quality. Journal of Zhejiang University Science B, 2005, 6B, 1069-1075.	0.4	34
70	Difference in response to aluminum stress among Tibetan wild barley genotypes. Journal of Plant Nutrition and Soil Science, 2011, 174, 952-960.	1.1	33
71	Exogenous Glycinebetaine Reduces Cadmium Uptake and Mitigates Cadmium Toxicity in Two Tobacco Genotypes Differing in Cadmium Tolerance. International Journal of Molecular Sciences, 2019, 20, 1612.	1.8	33
72	An ATP binding cassette transporter HvABCB25 confers aluminum detoxification in wild barley. Journal of Hazardous Materials, 2021, 401, 123371.	6.5	33

#	Article	IF	CITATIONS
73	Evolution of rapid blueâ€light response linked to explosive diversification of ferns in angiosperm forests. New Phytologist, 2021, 230, 1201-1213.	3.5	33
74	Genome-wide characterization of drought stress responsive long non-coding RNAs in Tibetan wild barley. Environmental and Experimental Botany, 2019, 164, 124-134.	2.0	31
75	Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling. Journal of Experimental Botany, 2020, 71, 6587-6600.	2.4	31
76	Comparative Proteomic Analysis of Aluminum Tolerance in Tibetan Wild and Cultivated Barleys. PLoS ONE, 2013, 8, e63428.	1.1	30
77	Differences in Physiological Traits Among Salt‣tressed Barley Genotypes. Communications in Soil Science and Plant Analysis, 2006, 37, 557-570.	0.6	29
78	Genotypic differences in photosynthetic performance, antioxidant capacity, ultrastructure and nutrients in response to combined stress of salinity and Cd in cotton. BioMetals, 2015, 28, 1063-1078.	1.8	29
79	Genome-Wide Identification, Characterization and Expression Analysis of Xyloglucan Endotransglucosylase/Hydrolase Genes Family in Barley (Hordeum vulgare). Molecules, 2019, 24, 1935.	1.7	29
80	Leaf epidermis transcriptome reveals drought-Induced hormonal signaling for stomatal regulation in wild barley. Plant Growth Regulation, 2019, 87, 39-54.	1.8	29
81	Genome-Wide Identification and Characterization of Drought Stress Responsive microRNAs in Tibetan Wild Barley. International Journal of Molecular Sciences, 2020, 21, 2795.	1.8	29
82	Metalloid hazards: From plant molecular evolution to mitigation strategies. Journal of Hazardous Materials, 2021, 409, 124495.	6.5	29
83	Agriculture organic wastes fermentation CO2 enrichment in greenhouse and the fermentation residues improve growth, yield and fruit quality in tomato. Journal of Cleaner Production, 2020, 275, 123885.	4.6	29
84	DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains. BMC Plant Biology, 2015, 15, 259.	1.6	28
85	Comparative transcriptome and tolerance mechanism analysis in the two contrasting wheat (Triticum) Tj ETQq1 101-114.	1 0.7843 1.8	14 rgBT /Ove 28
86	Effects of chromium stress on the subcellular distribution and chemical form of Ca, Mg, Fe, and Zn in two rice genotypes. Journal of Plant Nutrition and Soil Science, 2010, 173, 135-148.	1.1	27
87	Genotype-dependent alleviation effects of exogenous GSH on salinity stress in cotton is related to improvement in chlorophyll content, photosynthetic performance, and leaf/root ultrastructure. Environmental Science and Pollution Research, 2017, 24, 9417-9427.	2.7	27
88	Cr-induced changes in leaf protein profile, ultrastructure and photosynthetic traits in the two contrasting tobacco genotypes. Plant Growth Regulation, 2016, 79, 147-156.	1.8	25
89	Characterization of Leaf Photosynthetic Properties for No-Tillage Rice. Rice Science, 2007, 14, 283-288.	1.7	23
90	Differences in Mn uptake and subcellular distribution in different barley genotypes as a response to Cd toxicity. Science of the Total Environment, 2007, 385, 228-234.	3.9	23

#	Article	IF	CITATIONS
91	Metabolome Analysis Revealed the Mechanism of Exogenous Glutathione to Alleviate Cadmium Stress in Maize (Zea mays L.) Seedlings. Plants, 2021, 10, 105.	1.6	23
92	Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley. Planta, 2016, 243, 973-985.	1.6	22
93	Foliar application of betaine improves water-deficit stress tolerance in barley (Hordeum vulgare L.). Plant Growth Regulation, 2019, 89, 109-118.	1.8	22
94	The Variation of β-amylase Activity and Protein Fractions in Barley Grains as Affected by Genotypes and Post-anthesis Temperatures. Journal of the Institute of Brewing, 2009, 115, 208-213.	0.8	21
95	Genotypic differences in callus induction and plant regeneration from mature embryos of barley (Hordeum vulgare L.). Journal of Zhejiang University: Science B, 2011, 12, 399-407.	1.3	20
96	HvPAA1 Encodes a P-Type ATPase, a Novel Gene for Cadmium Accumulation and Tolerance in Barley (Hordeum vulgare L.). International Journal of Molecular Sciences, 2019, 20, 1732.	1.8	20
97	The Barley S-Adenosylmethionine Synthetase 3 Gene HvSAMS3 Positively Regulates the Tolerance to Combined Drought and Salinity Stress in Tibetan Wild Barley. Cells, 2020, 9, 1530.	1.8	20
98	Differences in Grain Ultrastructure, Phytochemical and Proteomic Profiles between the Two Contrasting Grain Cd-Accumulation Barley Genotypes. PLoS ONE, 2013, 8, e79158.	1.1	19
99	HvHOX9, a novel homeobox leucine zipper transcription factor, positively regulates aluminum tolerance in Tibetan wild barley. Journal of Experimental Botany, 2020, 71, 6057-6073.	2.4	19
100	N-acetyl-cysteine alleviates Cd toxicity and reduces Cd uptake in the two barley genotypes differing in Cd tolerance. Plant Growth Regulation, 2014, 74, 93-105.	1.8	18
101	Resemblance and Difference of Seedling Metabolic and Transporter Gene Expression in High Tolerance Wheat and Barley Cultivars in Response to Salinity Stress. Plants, 2020, 9, 519.	1.6	18
102	Genotypic Difference in Effect of Cadmium on Development and Mineral Concentrations of Cotton. Communications in Soil Science and Plant Analysis, 2004, 35, 285-299.	0.6	17
103	Interactive effects of aluminum and chromium stresses on the uptake of nutrients and the metals in barley. Soil Science and Plant Nutrition, 2011, 57, 68-79.	0.8	17
104	Transient silencing of an expansin HvEXPA1 inhibits root cell elongation and reduces Al accumulation in root cell wall of Tibetan wild barley. Environmental and Experimental Botany, 2019, 165, 120-128.	2.0	17
105	Genotypic and environmental variation in barley beta-amylase activity and its relation to protein content. Food Chemistry, 2003, 83, 163-165.	4.2	16
106	Heterosis for Yield and some Physiological Traits in Hybrid Cotton Cikangza 1. Euphytica, 2006, 151, 71-77.	0.6	16
107	Interaction of Salinity and Cadmium Stresses on Antioxidant Enzymes, Sodium, and Cadmium Accumulation in Four Barley Genotypes. Journal of Plant Nutrition, 2006, 29, 2215-2225.	0.9	16
108	The effect of H2O2 and abscisic acid (ABA) interaction on Î ² -amylase activity under osmotic stress during grain development in barley. Plant Physiology and Biochemistry, 2009, 47, 778-784.	2.8	16

#	Article	IF	CITATIONS
109	Comparative proteomic analysis of two tobacco (Nicotiana tabacum) genotypes differing in Cd tolerance. BioMetals, 2014, 27, 1277-1289.	1.8	16
110	The regulation of root growth in response to phosphorus deficiency mediated by phytohormones in a Tibetan wild barley accession. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	16
111	Application of sulfur fertilizer reduces cadmium accumulation and toxicity in tobacco seedlings (Nicotiana tabacum). Plant Growth Regulation, 2018, 85, 165-170.	1.8	16
112	Breeding for low cadmium accumulation cereals. Journal of Zhejiang University: Science B, 2020, 21, 442-459.	1.3	16
113	The changes in physiological and biochemical traits of Tibetan wild and cultivated barley in response to low phosphorus stress. Soil Science and Plant Nutrition, 2014, 60, 832-842.	0.8	15
114	Response of Tibetan Wild Barley Genotypes to Drought Stress and Identification of Quantitative Trait Loci by Genome-Wide Association Analysis. International Journal of Molecular Sciences, 2019, 20, 791.	1.8	15
115	CO2 enrichment using CRAM fermentation improves growth, physiological traits and yield of cherry tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences, 2020, 27, 1041-1048.	1.8	15
116	Effect of Cadmium on Uptake and Translocation of Three Microelements in Cotton. Journal of Plant Nutrition, 2005, 27, 2019-2032.	0.9	14
117	Differences in physiological features associated with aluminum tolerance in Tibetan wild and cultivated barleys. Plant Physiology and Biochemistry, 2014, 75, 36-44.	2.8	14
118	Heterosis in CMS hybrids of cotton for photosynthetic and chlorophyll fluorescence parameters. Euphytica, 2005, 144, 353-361.	0.6	13
119	Response of Cadmium Uptake in Different Barley Genotypes to Cadmium Level. Journal of Plant Nutrition, 2005, 28, 2201-2209.	0.9	13
120	Genetic mapping of quantitative trait loci associated with β-amylase and limit dextrinase activities and β-glucan and protein fraction contents in barley. Journal of Zhejiang University: Science B, 2009, 10, 839-846.	1.3	13
121	Genotypic and Environmental Variations of Arabinoxylan Content and Endoxylanase Activity in Barley Grains. Journal of Integrative Agriculture, 2013, 12, 1489-1494.	1.7	12
122	Tolerance to Drought, Low pH and Al Combined Stress in Tibetan Wild Barley Is Associated with Improvement of ATPase and Modulation of Antioxidant Defense System. International Journal of Molecular Sciences, 2018, 19, 3553.	1.8	12
123	Chloride transport at plant-soil Interface modulates barley cd tolerance. Plant and Soil, 2019, 441, 409-421.	1.8	12
124	An miR156-regulated nucleobase-ascorbate transporter 2 confers cadmium tolerance via enhanced anti-oxidative capacity in barley. Journal of Advanced Research, 2023, 44, 23-37.	4.4	11
125	Identification of the differentially accumulated proteins associated with low phosphorus tolerance in a Tibetan wild barley accession. Journal of Plant Physiology, 2016, 198, 10-22.	1.6	10
126	Genome-Wide Discovery of miRNAs with Differential Expression Patterns in Responses to Salinity in the Two Contrasting Wheat Cultivars. International Journal of Molecular Sciences, 2021, 22, 12556.	1.8	10

#	Article	IF	CITATIONS
127	Difference in physiological and biochemical responses to salt stress between Tibetan wild and cultivated barleys. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	9
128	Genotypic-dependent effects of N fertilizer, glutathione, silicon, zinc, and selenium on proteomic profiles, amino acid contents, and quality of rice genotypes with contrasting grain Cd accumulation. Functional and Integrative Genomics, 2017, 17, 387-397.	1.4	9
129	Genotypic Differences in Effect of Cadmium on Growth Parameters of Barley During Ontogenesis. Communications in Soil Science and Plant Analysis, 2003, 34, 2021-2034.	0.6	8
130	MALDI-TOF mass spectrometry provides an efficient approach to monitoring protein modification in the malting process. International Journal of Mass Spectrometry, 2014, 371, 8-16.	0.7	8
131	Identification of low grain cadmium accumulation genotypes and its physiological mechanism in maize (Zea mays L.). Environmental Science and Pollution Research, 2022, 29, 20721-20730.	2.7	8
132	The genome and gene editing system of sea barleygrass provideÂa novel platform for cereal domestication and stress tolerance studies. Plant Communications, 2022, 3, 100333.	3.6	8
133	Genotypic difference in the influence of aluminum and low pH on ion flux, rhizospheric pH and ATPase activity between Tibetan wild and cultivated barley. Environmental and Experimental Botany, 2018, 156, 16-24.	2.0	7
134	Mechanistic Insights into Potassium-Conferred Drought Stress Tolerance in Cultivated and Tibetan Wild Barley: Differential Osmoregulation, Nutrient Retention, Secondary Metabolism and Antioxidative Defense Capacity. International Journal of Molecular Sciences, 2021, 22, 13100.	1.8	7
135	Hormonal changes in grains of cv. Triumph and its mutant TL43 as affected by nitrogen fertilizer at heading time. Journal of Cereal Science, 2009, 49, 246-249.	1.8	6
136	Tolerance to Combined Stress of Drought and Salinity in Barley. , 2015, , 93-121.		6
137	Genotype-dependent effects of phosphorus supply on physiological and biochemical responses to Al-stress in cultivated and Tibetan wild barley. Plant Growth Regulation, 2017, 82, 259-270.	1.8	6
138	Genotypic difference in secondary metabolismâ€related enzyme activities and their relative gene expression patterns, osmolyte and plant hormones in wheat. Physiologia Plantarum, 2020, 168, 921-933.	2.6	6
139	Variation in \hat{l}^2 -amylase activity and thermostability in Tibetan annual wild and cultivated barley genotypes. Journal of Zhejiang University: Science B, 2014, 15, 801-808.	1.3	5
140	Differences in Grain Microstructure and Proteomics of a Broad Bean (Vicia faba L.) Landrace Cixidabaican in China Compared with Lingxiyicun Introduced from Japan. Plants, 2021, 10, 1385.	1.6	4
141	Exploration and Utilization of Drought-Tolerant Barley Germplasm. , 2016, , 115-152.		3
142	Characteristics of Photosynthetic Performance, Antioxidant Capacity and Nutrient Concentration of Tibetan Wild Barley in Response to Aluminium Stress. Asian Journal of Chemistry, 2013, 25, 7727-7731.	0.1	2
143	Effect of Cadmium on Uptake and Translocation of Three Microelements in Cotton. , 0, .		1
144	Drought Tolerant Wild Species Are the Important Sources of Genes and Molecular Mechanisms		0

144 Drought Tolerant wild Species Are the important Sources of Genes and Molecular Mechan Studies: Implication for Developing Drought Tolerant Crops. , 2016, , 401-426. 0

#	Article	IF	CITATIONS
145	Optimized Protocol for OnGuard2 Software in Studying Guard Cell Membrane Transport and Stomatal Physiology. Frontiers in Plant Science, 2020, 11, 131.	1.7	Ο