
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1819539/publications.pdf Version: 2024-02-01

RINLIU

#	Article	IF	CITATIONS
1	Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. Advanced Science, 2021, 8, e2101111.	11.2	157
2	Constructing Robust Electrode/Electrolyte Interphases to Enable Wide Temperature Applications of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 21496-21505.	8.0	44
3	Highly Stable Oxygen Electrodes Enabled by Catalyst Redistribution through an In Situ Electrochemical Method. Advanced Energy Materials, 2019, 9, 1803598.	19.5	6
4	Nickel-cobalt selenide as high-performance and long-life electrode material for supercapacitor. Journal of Colloid and Interface Science, 2019, 540, 306-314.	9.4	73
5	Rechargeable Lithium Metal Batteries. , 2019, , 147-203.		0
6	(Invited) Electrolytes for Wide-Temperature Application Range of Lithium Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
7	Hybrid Polymer Electrolytes for Lithium Metal Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
8	Advancing Lithium Metal Batteries. Joule, 2018, 2, 833-845.	24.0	1,052
9	Enhanced Cyclability of Lithium–Oxygen Batteries with Electrodes Protected by Surface Films Induced via In Situ Electrochemical Process. Advanced Energy Materials, 2018, 8, 1702340.	19.5	38
10	High Voltage Operation of Niâ€Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases. Advanced Energy Materials, 2018, 8, 1800297.	19.5	298
11	Efficient Photocatalytic Reduction Approach for Synthesizing Chemically Bonded N-Doped TiO ₂ /Reduced Graphene Oxide Hybrid as a Freestanding Electrode for High-Performance Lithium Storage. ACS Applied Energy Materials, 2018, 1, 4186-4195.	5.1	11
12	B4C as a stable non-carbon-based oxygen electrode material for lithium-oxygen batteries. Nano Energy, 2017, 33, 195-204.	16.0	65
13	Stabilization of Li Metal Anode in DMSOâ€Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O ₂ Batteries. Advanced Energy Materials, 2017, 7, 1602605.	19.5	99
14	Complete Decomposition of Li ₂ CO ₃ in Li–O ₂ Batteries Using Ir/B ₄ C as Noncarbon-Based Oxygen Electrode. Nano Letters, 2017, 17, 1417-1424.	9.1	104
15	Revealing the reaction mechanisms of Li–O2 batteries using environmental transmission electron microscopy. Nature Nanotechnology, 2017, 12, 535-539.	31.5	160
16	Temperature Dependence of the Oxygen Reduction Mechanism in Nonaqueous Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 2525-2530.	17.4	30
17	Stabilization of Li Metal Anode in DMSO-Based Electrolytes Via Optimization of Salt-Solvent Coordination for Li-O2 Batteries. ECS Meeting Abstracts, 2017, , .	0.0	0
18	Enhanced Cycling Stability of Rechargeable Li–O ₂ Batteries Using High oncentration Electrolytes. Advanced Functional Materials, 2016, 26, 605-613.	14.9	104

#	Article	IF	CITATIONS
19	Electrochemically Formed Ultrafine Metal Oxide Nanocatalysts for High-Performance Lithium–Oxygen Batteries. Nano Letters, 2016, 16, 4932-4939.	9.1	62
20	Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. Nano Today, 2016, 11, 82-97.	11.9	73
21	A Stable Carbon-Free Cathode for Rechargeable Lithium-Oxygen Battery with Long Cycle Performance. ECS Meeting Abstracts, 2016, , .	0.0	0
22	Inâ€Situâ€Grown ZnCo ₂ O ₄ on Singleâ€Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium–Oxygen Batteries. ChemSusChem, 2015, 8, 3697-3703.	6.8	34
23	Optimised synthesis of close packed ZnO cloth and its applications in Li-ion batteries and dye-sensitized solar cells. Frontiers of Optoelectronics, 2015, 8, 220-228.	3.7	1
24	Tin Microspheres Grown on Carbon Cloth as Binderâ€Free Integrated Anode for High Capacity Lithium Storage. Energy Technology, 2014, 2, 370-375.	3.8	10
25	Sprayâ€Painted Binderâ€Free SnSe Electrodes for Highâ€Performance Energyâ€Storage Devices. ChemSusChem, 2014, 7, 308-313.	6.8	81
26	Fiberâ€Based Flexible Allâ€Solidâ€State Asymmetric Supercapacitors for Integrated Photodetecting System. Angewandte Chemie - International Edition, 2014, 53, 1849-1853.	13.8	387
27	Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets. Electrochimica Acta, 2014, 125, 294-301.	5.2	116
28	Core–Shell CuCo ₂ O ₄ @MnO ₂ Nanowires on Carbon Fabrics as Highâ€Performance Materials for Flexible, Allâ€Solidâ€State, Electrochemical Capacitors. ChemElectroChem, 2014, 1, 559-564.	3.4	149
29	Memristorâ€Integrated Voltageâ€Stabilizing Supercapacitor System. Advanced Materials, 2014, 26, 4999-5004.	21.0	26
30	Si@SiO2 nanowires/carbon textiles cable-type anodes for high-capacity reversible lithium-ion batteries. RSC Advances, 2014, 4, 18391.	3.6	11
31	Constructing optimized wire electrodes for fiber supercapacitors. Nano Energy, 2014, 10, 99-107.	16.0	59
32	SnO ₂ @TiO ₂ Heterojunction Nanostructures for Lithiumâ€ion Batteries and Selfâ€Powered UV Photodetectors with Improved Performances. ChemElectroChem, 2014, 1, 108-115.	3.4	104
33	Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Research, 2014, 7, 1073-1082.	10.4	100
34	Flexible Energy‣torage Devices: Design Consideration and Recent Progress. Advanced Materials, 2014, 26, 4763-4782.	21.0	1,153
35	Hierarchical MnCo ₂ O ₄ nanosheet arrays/carbon cloths as integrated anodes for lithium-ion batteries with improved performance. Nanoscale, 2014, 6, 8858-8864.	5.6	121
36	Rechargeable Mg-Ion Batteries Based on WSe ₂ Nanowire Cathodes. ACS Nano, 2013, 7, 8051-8058.	14.6	244

#	Article	IF	CITATIONS
37	Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Research, 2013, 6, 525-534.	10.4	109
38	SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale, 2013, 5, 7831.	5.6	91
39	Highly Reversible Lithium Storage in Hierarchical Ca ₂ Ge ₇ O ₁₆ Nanowire Arrays/Carbon Textile Anodes. Chemistry - A European Journal, 2013, 19, 8650-8656.	3.3	50
40	Single-crystalline metal germanate nanowire–carbon textiles as binder-free, self-supported anodes for high-performance lithium storage. Nanoscale, 2013, 5, 10291.	5.6	53
41	New Energy Storage Option: Toward ZnCo ₂ O ₄ Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2013, 5, 10011-10017.	8.0	362
42	Facile synthesis and electrochemical properties of CoMn ₂ O ₄ anodes for high capacity lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2139-2143.	10.3	88
43	TiO2 modified FeS Nanostructures with Enhanced Electrochemical Performance for Lithium-Ion Batteries. Scientific Reports, 2013, 3, 2007.	3.3	133
44	Flexible, Planarâ€Integrated, Allâ€Solidâ€State Fiber Supercapacitors with an Enhanced Distributedâ€Capacitance Effect. Small, 2013, 9, 1998-2004.	10.0	133
45	Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries. Scientific Reports, 2013, 3, 1622.	3.3	136
46	NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2013, 1, 2468.	10.3	344
47	Threeâ€Dimensional Hierarchical GeSe ₂ Nanostructures for High Performance Flexible Allâ€Solidâ€State Supercapacitors. Advanced Materials, 2013, 25, 1479-1486.	21.0	236
48	Selective synthesis of Sb_2S_3 nanoneedles and nanoflowers for high performance rigid and flexible photodetectors. Optics Express, 2013, 21, 13639.	3.4	45
49	Highâ€Performance Organicâ€Inorganic Hybrid Photodetectors Based on P3HT:CdSe Nanowire Heterojunctions on Rigid and Flexible Substrates. Advanced Functional Materials, 2013, 23, 1202-1209.	14.9	213
50	Singleâ€Crystalline pâ€Type Zn ₃ As ₂ Nanowires for Fieldâ€Effect Transistors and Visibleâ€Light Photodetectors on Rigid and Flexible Substrates. Advanced Functional Materials, 2013, 23, 2681-2690.	14.9	79
51	Phase-controlled synthesis of 3D flower-like Ni(OH)2 architectures and their applications in water treatment. CrystEngComm, 2012, 14, 3063.	2.6	45
52	High-performance photodetectors, photocatalysts, and gas sensors based on polyol reflux synthesized porous ZnO nanosheets. CrystEngComm, 2012, 14, 4582.	2.6	46
53	Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. Journal of Materials Chemistry, 2012, 22, 21647.	6.7	310
54	Shape evolution and applications in water purification: the case of CVD-grown Zn2SiO4 straw-bundles. Journal of Materials Chemistry, 2012, 22, 5330.	6.7	33

#	Article	IF	CITATIONS
55	Multilayer TiO2 nanorod cloth/nanorod array electrode for dye-sensitized solar cells and self-powered UV detectors. Nanoscale, 2012, 4, 3350.	5.6	66
56	ZnO-nanoparticle-assembled cloth for flexible photodetectors and recyclable photocatalysts. Journal of Materials Chemistry, 2012, 22, 9379.	6.7	75
57	Nanorod-assembled Co3O4 hexapods with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 23541.	6.7	132
58	Hierarchical Three-Dimensional ZnCo ₂ O ₄ Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano Letters, 2012, 12, 3005-3011.	9.1	967
59	GaS and GaSe Ultrathin Layer Transistors. Advanced Materials, 2012, 24, 3549-3554.	21.0	580
60	Transferable and Flexible Nanorod-Assembled TiO ₂ Cloths for Dye-Sensitized Solar Cells, Photodetectors, and Photocatalysts. ACS Nano, 2011, 5, 8412-8419.	14.6	209
61	Growth of Oriented Single-Crystalline Rutile TiO ₂ Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009, 131, 3985-3990.	13.7	2,243