
Jicheng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1819481/publications.pdf Version: 2024-02-01

ΙΙCHENC ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Ternaryâ€Blend Polymer Solar Cells Combining Fullerene and Nonfullerene Acceptors to Synergistically Boost the Photovoltaic Performance. Advanced Materials, 2016, 28, 9559-9566.	11.1	267
2	Simultaneous enhancement of the molecular planarity and the solubility of non-fullerene acceptors: effect of aliphatic side-chain substitution on the photovoltaic performance. Journal of Materials Chemistry A, 2017, 5, 7776-7783.	5.2	87
3	1,8-Naphthalimide-Based Planar Small Molecular Acceptor for Organic Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 5475-5483.	4.0	80
4	4-Alkyl-3,5-difluorophenyl-Substituted Benzodithiophene-Based Wide Band Gap Polymers for High-Efficiency Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 3686-3692.	4.0	75
5	A BODIPYâ€Based Donor/Donor–Acceptor System: Towards Highly Efficient Longâ€Wavelengthâ€Excitable Nearâ€IR Polymer Dots with Narrow and Strong Absorption Features. Angewandte Chemie - International Edition, 2019, 58, 7008-7012.	7.2	57
6	Facile and Efficient Approach to Speed up Layer-by-Layer Assembly: Dipping in Agitated Solutions. Langmuir, 2011, 27, 672-677.	1.6	53
7	Benzothiadiazole based conjugated polymers for high performance polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 20195-20200.	5.2	52
8	A nonfullerene acceptor for wide band gap polymer based organic solar cells. Chemical Communications, 2016, 52, 469-472.	2.2	48
9	5-Alkyloxy-6-fluorobenzo[<i>c</i>][1,2,5]thiadiazole- and Silafluorene-Based D–A Alternating Conjugated Polymers: Synthesis and Application in Polymer Photovoltaic Cells. Macromolecules, 2014, 47, 4645-4652.	2.2	47
10	1,8-Naphthalimide-based nonfullerene acceptors for wide optical band gap polymer solar cells with an ultrathin active layer thickness of 35 nm. Journal of Materials Chemistry C, 2016, 4, 5656-5663.	2.7	42
11	A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage. Journal of Materials Chemistry C, 2015, 3, 6979-6985.	2.7	41
12	Enhancing the power conversion efficiency of polymer solar cells to 9.26% by a synergistic effect of fluoro and carboxylate substitution. Journal of Materials Chemistry A, 2016, 4, 8097-8104.	5.2	39
13	Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie - International Edition, 2021, 60, 12007-12012.	7.2	37
14	Well-defined star-shaped donor–acceptor conjugated molecules for organic resistive memory devices. Chemical Communications, 2015, 51, 14179-14182.	2.2	32
15	Synthesis of star-shaped small molecules carrying peripheral 1,8-naphthalimide functional groups and their applications in organicAsolar cells. Dyes and Pigments, 2015, 115, 181-189.	2.0	30
16	5,6-Difluorobenzothiadiazole and silafluorene based conjugated polymers for organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 5116-5123.	2.7	27
17	Dualâ€Mode Superresolution Imaging Using Charge Transfer Dynamics in Semiconducting Polymer Dots. Angewandte Chemie - International Edition, 2020, 59, 16173-16180.	7.2	27
18	Hyperbranched polymer as an acceptor for polymer solar cells. Chemical Communications, 2017, 53, 537-540.	2.2	26

JICHENG ZHANG

#	Article	IF	CITATIONS
19	Recent Progress of Fluorescence Sensors for Histamine in Foods. Biosensors, 2022, 12, 161.	2.3	21
20	Monitoring Metabolites Using an NAD(P)Hâ€sensitive Polymer Dot and a Metaboliteâ€Specific Enzyme. Angewandte Chemie - International Edition, 2021, 60, 19331-19336.	7.2	19
21	Enhancing the Longâ€Term Stability of a Polymer Dot Glucose Transducer by Using an Enzymatic Cascade Reaction System. Advanced Healthcare Materials, 2021, 10, e2001019.	3.9	18
22	Non-fullerene small molecular acceptors with a carbazole core for organic solar cells with high open-circuit voltage. Dyes and Pigments, 2017, 146, 293-299.	2.0	17
23	Vinylene- and ethynylene-bridged perylene diimide dimers as nonfullerene acceptors for polymer solar cells. Dyes and Pigments, 2017, 146, 143-150.	2.0	16
24	High efficiency polymer solar cells based on alkylthio substituted benzothiadiazole-quaterthiophene alternating conjugated polymers. Organic Electronics, 2017, 40, 36-41.	1.4	16
25	Planar Conjugated Polymers Containing 9,10â€Disubstituted Phenanthrene Units for Efficient Polymer Solar Cells. Macromolecular Rapid Communications, 2014, 35, 1142-1147.	2.0	14
26	Fully branched hyperbranched polymers with a focal point: analogous to dendrimers. Polymer Chemistry, 2014, 5, 2401.	1.9	14
27	Enhancing the Performance of Polymer Solar Cells by Using Donor Polymers Carrying Discretely Distributed Side Chains. ACS Applied Materials & Interfaces, 2017, 9, 24020-24026.	4.0	14
28	Side chain effect of nonfullerene acceptors on the photovoltaic performance of wide band gap polymer solar cells. Synthetic Metals, 2016, 220, 578-584.	2.1	13
29	Efficient polymer solar cells processed by environmentally friendly halogen-free solvents. RSC Advances, 2016, 6, 39074-39079.	1.7	11
30	Improving the Accuracy of Pdot-Based Continuous Glucose Monitoring by Using External Ratiometric Calibration. Analytical Chemistry, 2021, 93, 2359-2366.	3.2	11
31	A molybdenum oxide-based degradable nanosheet for combined chemo-photothermal therapy to improve tumor immunosuppression and suppress distant tumors and lung metastases. Journal of Nanobiotechnology, 2021, 19, 428.	4.2	10
32	Enhancing the Efficiency of Polymer Solar Cells by Incorporation of 2,5-Difluorobenzene Units into the Polymer Backbone via Random Copolymerization. ACS Applied Materials & Interfaces, 2017, 9, 23775-23781.	4.0	9
33	Influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells. Solar Energy Materials and Solar Cells, 2018, 174, 1-6.	3.0	9
34	Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie, 2021, 133, 12114-12119.	1.6	8
35	Monitoring Metabolites Using an NAD(P)Hâ€sensitive Polymer Dot and a Metaboliteâ€Specific Enzyme. Angewandte Chemie, 2021, 133, 19480-19485.	1.6	8
36	Enhancing the performance of polymer solar cells by tuning the drying process of blend films via changing side chains and using solvent additives. Journal of Materials Chemistry C, 2015, 3, 9670-9677.	2.7	7

JICHENG ZHANG

#	Article	IF	CITATIONS
37	Ultrabright Pdots with a Large Absorbance Cross Section and High Quantum Yield. ACS Applied Materials & Interfaces, 2022, 14, 13631-13637.	4.0	7
38	Synthesis and application of benzooxadiazole-based conjugated polymers in high performance phototransistors. Journal of Materials Chemistry C, 2015, 3, 12083-12089.	2.7	5
39	The Influence of Fluorination on Nano-Scale Phase Separation and Photovoltaic Performance of Small Molecular/PC71BM Blends. Nanomaterials, 2016, 6, 80.	1.9	4
40	A BODIPYâ€Based Donor/Donor–Acceptor System: Towards Highly Efficient Longâ€Wavelengthâ€Excitable Nearâ€IR Polymer Dots with Narrow and Strong Absorption Features. Angewandte Chemie, 2019, 131, 7082-7086.	1.6	4
41	Dualâ€Mode Superresolution Imaging Using Charge Transfer Dynamics in Semiconducting Polymer Dots. Angewandte Chemie, 2020, 132, 16307-16314.	1.6	4
42	The coalescence and reconstruction of closed-shell graphitic carbon: from a nanosized polyhedron to a micron-sized dish stacked structure by KOH activation. RSC Advances, 2013, 3, 6117.	1.7	3
43	The effect of meta-substituted or para-substituted phenyl as side chains on the performance of polymer solar cells. Synthetic Metals, 2016, 220, 402-409.	2.1	3
44	Data on the detail information of influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells. Data in Brief, 2017, 14, 531-537.	0.5	3
45	Reducing the Nano-Scale Aggregation of Perylene Diimide Based Acceptor by Conjugating a Bridge with a Large Volume. Micromachines, 2019, 10, 640.	1.4	1
46	Optimization of W5 fault block surface-active polymer flooding scheme. Petroleum Science and Technology, 2020, 38, 472-477.	0.7	0