Tercio ambrizzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1819254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rossby Wave Propagation on a Realistic Longitudinally Varying Flow. Journals of the Atmospheric Sciences, 1993, 50, 1661-1671.	0.6	862
2	Toward a Unified View of the American Monsoon Systems. Journal of Climate, 2006, 19, 4977-5000.	1.2	677
3	Trends in Total and Extreme South American Rainfall in 1960–2000 and Links with Sea Surface Temperature. Journal of Climate, 2006, 19, 1490-1512.	1.2	535
4	Recent developments on the South American monsoon system. International Journal of Climatology, 2012, 32, 1-21.	1.5	375
5	Observed Trends in Indices of Daily Temperature Extremes in South America 1960–2000. Journal of Climate, 2005, 18, 5011-5023.	1.2	374
6	Regimes de precipitação na América do Sul: uma revisão bibliográfica. Revista Brasileira De Meteorologia, 2010, 25, 185-204.	0.2	311
7	Submonthly Convective Variability over South America and the South Atlantic Convergence Zone. Journal of Climate, 1999, 12, 1877-1891.	1.2	282
8	Rossby Wave Propagation and Teleconnection Patterns in the Austral Winter. Journals of the Atmospheric Sciences, 1995, 52, 3661-3672.	0.6	260
9	Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Climate Dynamics, 2010, 35, 1073-1097.	1.7	194
10	The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Climate Dynamics, 2016, 46, 3737-3752.	1.7	193
11	Opposite Phases of the Antarctic Oscillation and Relationships with Intraseasonal to Interannual Activity in the Tropics during the Austral Summer. Journal of Climate, 2005, 18, 702-718.	1.2	156
12	Stationary rossby-wave propagation in a baroclinic atmosphere. Quarterly Journal of the Royal Meteorological Society, 1997, 123, 919-928.	1.0	134
13	The Impacts of Inter–El Niño Variability on the Tropical Atlantic and Northeast Brazil Climate. Journal of Climate, 2011, 24, 3402-3422.	1.2	118
14	The role of the Amazon Basin moisture in the atmospheric branch of the hydrological cycle: a Lagrangian analysis. Hydrology and Earth System Sciences, 2014, 18, 2577-2598.	1.9	116
15	A Lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin. Journal of Geophysical Research, 2008, 113, .	3.3	110
16	Exploring the impacts of the tropical Pacific SST on the precipitation patterns over South America during ENSO periods. Theoretical and Applied Climatology, 2002, 71, 185-197.	1.3	101
17	South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dynamics, 2010, 35, 1331-1347.	1.7	92
18	Modulation of the intraseasonal rainfall over tropical Brazil by the Madden–Julian oscillation. International Journal of Climatology, 2006, 26, 1759-1776.	1.5	89

#	Article	IF	CITATIONS
19	Precipitation diurnal cycle and summer climatology assessment over South America: An evaluation of Regional Climate Model version 3 simulations. Journal of Geophysical Research, 2009, 114, .	3.3	89
20	The South Atlantic Subtropical Anticyclone: Present and Future Climate. Frontiers in Earth Science, 2019, 7, .	0.8	86
21	Precipitation variability in São Paulo State, Brazil. Theoretical and Applied Climatology, 2008, 93, 167-178.	1.3	83
22	Variability of Southern Hemisphere Cyclone and Anticyclone Behavior: Further Analysis. Journal of Climate, 2003, 16, 1075-1083.	1.2	80
23	Indian Ocean Dipole mode events and austral surface air temperature anomalies. Dynamics of Atmospheres and Oceans, 2005, 39, 87-101.	0.7	76
24	Observational evidences on the modulation of the South American Low Level Jet east of the Andes according the ENSO variability. Annales Geophysicae, 2009, 27, 645-657.	0.6	70
25	The state of the art and fundamental aspects of regional climate modeling in South America. Annals of the New York Academy of Sciences, 2019, 1436, 98-120.	1.8	68
26	Intraseasonal and submonthly variability over the Eastern Amazon and Northeast Brazil during the autumn rainy season. Theoretical and Applied Climatology, 2005, 81, 177-191.	1.3	65
27	Relationship between the southern annular mode and southern hemisphere atmospheric systems. Revista Brasileira De Meteorologia, 2009, 24, 48-55.	0.2	63
28	Extreme precipitation events and their relationship with <scp>ENSO</scp> and <scp>MJO</scp> phases over northern South America. International Journal of Climatology, 2017, 37, 2977-2989.	1.5	62
29	Moisture Sources and Life Cycle of Convective Systems over Western Colombia. Advances in Meteorology, 2011, 2011, 1-11.	0.6	59
30	Teleconnections into South America from the Tropics and Extratropics on Interannual and Intraseasonal Timescales. Developments in Paleoenvironmental Research, 2009, , 159-191.	7.5	58
31	The Hadley and Walker Regional Circulations and Associated ENSO Impacts on South American Seasonal Rainfall. Advances in Global Change Research, 2004, , 203-235.	1.6	57
32	Trends in extreme rainfall and hydrogeometeorological disasters in the Metropolitan Area of São Paulo: a review. Annals of the New York Academy of Sciences, 2020, 1472, 5-20.	1.8	54
33	MJO influence on ENSO effects in precipitation and temperature over South America. Theoretical and Applied Climatology, 2016, 124, 291-301.	1.3	53
34	Climatology of easterly wave disturbances over the tropical South Atlantic. Climate Dynamics, 2019, 53, 1393-1411.	1.7	53
35	Can Indian Ocean SST anomalies influence South American rainfall?. Climate Dynamics, 2012, 38, 1615-1628.	1.7	52
36	The Response of Subtropical Highs to Climate Change. Current Climate Change Reports, 2018, 4, 371-382.	2.8	51

#	Article	IF	CITATIONS
37	Easterly Wave Disturbances over Northeast Brazil: An Observational Analysis. Advances in Meteorology, 2015, 2015, 1-20.	0.6	50
38	Climatological features of cutoff low systems in the Southern Hemisphere. Journal of Geophysical Research, 2010, 115, .	3.3	48
39	Entendendo o tempo e o clima na América do Sul. Terrae Didatica, 2015, 8, 34.	0.0	48
40	Teleconnection patterns and Rossby wave propagation associated to generalized frosts over southern South America. Climate Dynamics, 2007, 29, 633-645.	1.7	45
41	The impact of El Niñ0 on South American summer climate during different phases of the Pacific Decadal Oscillation. Theoretical and Applied Climatology, 2011, 106, 307-319.	1.3	45
42	Impacts of teleconnection patterns on South America climate. Annals of the New York Academy of Sciences, 2021, 1504, 116-153.	1.8	44
43	Trend and teleconnection patterns in the climatology of extratropical cyclones over the Southern Hemisphere. Climate Dynamics, 2015, 45, 1929-1944.	1.7	43
44	Dynamical conditions and synoptic tracks associated with different types of cold surge over tropical South America. International Journal of Climatology, 2005, 25, 215-241.	1.5	42
45	The role of the Madden–Julian oscillation on the Amazon Basin intraseasonal rainfall variability. International Journal of Climatology, 2019, 39, 343-360.	1.5	42
46	A new climatology for Southern Hemisphere blockings in the winter and the combined effect of ENSO and SAM phases. International Journal of Climatology, 2014, 34, 1676-1692.	1.5	40
47	An objective criterion for determining the South Atlantic Convergence Zone. Frontiers in Environmental Science, 2015, 3, .	1.5	37
48	Extreme events in the La Plata basin: a retrospective analysis of what we have learned during CLARIS-LPB project. Climate Research, 2016, 68, 95-116.	0.4	36
49	Mean atmospheric circulation leading to generalized frosts in central southern South America. Theoretical and Applied Climatology, 2005, 82, 95-112.	1.3	35
50	Influence of decadal sea surface temperature variability on northern Brazil rainfall in CMIP5 simulations. Climate Dynamics, 2018, 51, 563-579.	1.7	35
51	The heat wave of October 2020 in central South America. International Journal of Climatology, 2022, 42, 2281-2298.	1.5	35
52	Inter-El Niño variability and its impact on the South American low-level jet east of the Andes during austral summer â^' two case studies. Advances in Geosciences, 0, 6, 283-287.	12.0	35
53	The role of SST on the South American atmospheric circulation during January, February and March 2001. Climate Dynamics, 2005, 24, 781-791.	1.7	33
54	Upper-air wave trains over the Pacific Ocean and wintertime cold surges in tropical-subtropical South America leading to Freezes in Southern and Southeastern Brazil. Theoretical and Applied Climatology, 2002, 73, 223-242.	1.3	32

#	Article	IF	CITATIONS
55	Effects of RegCM3 parameterizations on simulated rainy season over South America. Climate Research, 2012, 52, 253-265.	0.4	32
56	Mesoscale convective systems over the Amazon basin. Part I: climatological aspects. International Journal of Climatology, 2018, 38, 215-229.	1.5	30
57	A Lagrangian Identification of the Main Sources of Moisture Affecting Northeastern Brazil during Its Pre-Rainy and Rainy Seasons. PLoS ONE, 2010, 5, e11205.	1.1	28
58	Changing Trends in Rainfall Extremes in the Metropolitan Area of São Paulo: Causes and Impacts. Frontiers in Climate, 2020, 2, .	1.3	26
59	RegCM3 nested in HadAM3 scenarios A2 and B2: projected changes in extratropical cyclogenesis, temperature and precipitation over the South Atlantic Ocean. Climatic Change, 2012, 113, 599-621.	1.7	24
60	Coherent South American Monsoon Variability During the Last Millennium Revealed Through Highâ€Resolution Proxy Records. Geophysical Research Letters, 2019, 46, 8261-8270.	1.5	24
61	The role of the South Indian and Pacific oceans in South American monsoon variability. Theoretical and Applied Climatology, 2008, 94, 125-137.	1.3	22
62	Evidences linking ENSO and coral growth in the Southwestern-South Atlantic. Climate Dynamics, 2007, 29, 869-880.	1.7	21
63	Changes in intensity of the regional Hadley cell in Indian Ocean and its impacts on surrounding regions. Meteorology and Atmospheric Physics, 2017, 129, 229-246.	0.9	20
64	Assessing changes in the atmospheric water budget as drivers for precipitation change over two CORDEX-CORE domains. Climate Dynamics, 2021, 57, 1615.	1.7	18
65	Why do extreme events still kill in the São Paulo Macro Metropolis Region? Chronicle of a death foretold in the global south. International Journal of Urban Sustainable Development, 2021, 13, 1-16.	1.0	18
66	The Influence of Atmospheric Blocking on the Rossby Wave Propagation in Southern Hemisphere Winter Flows Journal of the Meteorological Society of Japan, 2002, 80, 139-159.	0.7	17
67	An assessment of the latent and sensible heat flux on the simulated regional climate over Southwestern South Atlantic Ocean. Climate Dynamics, 2010, 34, 873-889.	1.7	17
68	Summertime moisture transport over Southeastern South America and extratropical cyclones behavior during inter-El Niño events. Theoretical and Applied Climatology, 2010, 101, 303-310.	1.3	16
69	Anomalous patterns of SST and moisture sources in the South Atlantic Ocean associated with dry events in southeastern Brazil. International Journal of Climatology, 2016, 36, 4913-4928.	1.5	15
70	The influence of the winter North Atlantic Oscillation index on hospital admissions through diseases of the circulatory system in Lisbon, Portugal. International Journal of Biometeorology, 2017, 61, 325-333.	1.3	15
71	CaracterÃsticas da Atmosfera na Primavera Austral Durante o El Niño de 2015/2016. Revista Brasileira De Meteorologia, 2017, 32, 293-310.	0.2	15
72	Preliminary Analysis on the Global Features of the NCEP CFSv2 Seasonal Hindcasts. Advances in Meteorology, 2014, 2014, 1-21.	0.6	14

#	Article	IF	CITATIONS
73	Extreme Intertropical Convergence Zone shifts over Southern Maritime Continent. Atmospheric Science Letters, 2017, 18, 2-10.	0.8	14
74	A Global and Hemispherical Analysis of the Lorenz Energetics Based on the Representative Concentration Pathways Used in CMIP5. Advances in Meteorology, 2013, 2013, 1-13.	0.6	13
75	Observed and simulated inter-decadal changes in the structure of Southern Hemisphere large-scale circulation. Climate Dynamics, 2015, 45, 2993-3017.	1.7	13
76	Impact of increased horizontal resolution in coupled and atmosphere-only models of the HadGEM1 family upon the climate patterns of South America. Climate Dynamics, 2017, 48, 3341-3364.	1.7	13
77	Links between topography, moisture fluxes pathways and precipitation over South America. Climate Dynamics, 2015, 45, 777-789.	1.7	12
78	Changes in the Austral Winter Hadley Circulation and the Impact on Stationary Rossby Waves Propagation. Advances in Meteorology, 2012, 2012, 1-15.	0.6	11
79	Recent Changes in the Annual Mean Regional Hadley Circulation and Their Impacts on South America. Advances in Meteorology, 2015, 2015, 1-22.	0.6	11
80	The Influence of the Regional Hadley and Walker Circulations on Precipitation Patterns over Africa in El Niño, La Niña, and Neutral Years. Pure and Applied Geophysics, 2018, 175, 2293-2306.	0.8	11
81	Mesoscale convective systems over the Amazon basin: The GoAmazon2014/5 program. International Journal of Climatology, 2019, 39, 5599-5618.	1.5	11
82	Assessing the skill of all-season diverse Madden–Julian oscillation indices for the intraseasonal Amazon precipitation. Climate Dynamics, 2020, 54, 3729-3749.	1.7	11
83	Análise de um ciclone semi-estacionário na costa sul do Brasil associado a bloqueio atmosférico. Revista Brasileira De Meteorologia, 2009, 24, 407-422.	0.2	11
84	Climatic variability of river outflow in the Pantanal region and the influence of sea surface temperature. Theoretical and Applied Climatology, 2017, 129, 97-109.	1.3	10
85	The effects of <scp>ENSO</scp> â€ŧypes and <scp>SAM</scp> on the largeâ€scale southern blockings. International Journal of Climatology, 2017, 37, 3067-3081.	1.5	10
86	Dry and Wet Climate Periods over Eastern South America: Identification and Characterization through the SPEI Index. Atmosphere, 2021, 12, 155.	1.0	10
87	Simulated austral winter response of the Hadley circulation and stationary Rossby wave propagation to a warming climate. Climate Dynamics, 2017, 49, 521-545.	1.7	9
88	Severe Weather Events over Southeastern Brazil during the 2016 Dry Season. Advances in Meteorology, 2018, 2018, 1-15.	0.6	9
89	A review exploring the overarching burden of Zika virus with emphasis on epidemiological case studies from Brazil. Environmental Science and Pollution Research, 2021, 28, 55952-55966.	2.7	9
90	Are Reanalysis Data Useful for Calculating Climate Indices over South America?. Annals of the New York Academy of Sciences, 2008, 1146, 87-104.	1.8	8

#	Article	IF	CITATIONS
91	Atmospheric conditions, lunar phases, and childbirth: a multivariate analysis. International Journal of Biometeorology, 2012, 56, 661-667.	1.3	7
92	Assessing the Moisture Transports Associated With Nocturnal Low-Level Jets in Continental South America. Frontiers in Environmental Science, 2021, 9, .	1.5	7
93	The role of the observed tropical convection in the generation of frost events in the southern cone of South America. Annales Geophysicae, 2008, 26, 1379-1390.	0.6	6
94	Projections of subcontinental changes in seasonal precipitation over the two major river basins in South America under an extreme climate scenario. Climate Dynamics, 2022, 58, 1147-1169.	1.7	6
95	MEWAR: Development of a Cross-Platform Mobile Application and Web Dashboard System for Real-Time Mosquito Surveillance in Northeast Brazil. Frontiers in Public Health, 2021, 9, 754072.	1.3	6
96	Anticiclone Subtropical do Atlântico Sul Associado ao Modo Anular Sul e Impactos Climáticos no Brasil. Revista Brasileira De Meteorologia, 2020, 35, 605-613.	0.2	6
97	PRECIPITAÇÃ∱O NA AMÉRICA DO SUL – DADOS OBTIDOS POR ESTAÇÕES METEOROLÓGICAS AUTOMÃ₹ POR SISTEMAS ORBITAIS. Revista Brasileira De Climatologia, 2019, 25, .	ICAS E	5
98	Transient contributions to the forcing of the atmospheric annual cycle. Climate Dynamics, 2019, 52, 6719-6733.	1.7	5
99	SISTEMAS FRONTAIS SOBRE A AMÉRICA DO SUL PARTE II: MONITORAMENTO MENSAL EM DADOS DA REANÃLISE I DO NCEP/NCAR. Ciência E Natura, 0, 38, 105.	0.0	5
100	Are Cut-off Lows simulated better in CMIP6 compared to CMIP5?. Climate Dynamics, 2022, 59, 2117-2136.	1.7	5
101	A comparison of global tropospheric teleconnections using observed satellite and general circulation model total ozone column data for 1979-91. Climate Dynamics, 1998, 14, 133-150.	1.7	4
102	Influence of intraseasonal variability on precipitation in northern South America during the winter season. International Journal of Climatology, 2017, 37, 2177-2186.	1.5	4
103	The analysis of global surface temperature wavelets from 1884 to 2014. Theoretical and Applied Climatology, 2019, 136, 1435-1451.	1.3	4
104	The Energy Cycle Associated to the Pacific Walker Circulation and Its Relationship to ENSO. Atmospheric and Climate Sciences, 2013, 03, 627-642.	0.1	4
105	Intraseasonal Drivers of the 2018 Drought Over São Paulo, Brazil. Frontiers in Climate, 2022, 4, .	1.3	4
106	South America Climate During the 1970–2001 Pacific Decadal Oscillation Phases Based on Different Reanalysis Datasets. Frontiers in Earth Science, 2020, 7, .	0.8	3
107	Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning. Research, Society and Development, 2021, 10, e452101220804.	0.0	3
108	Putting into action the REGCM4.6 regional climate model for the study of climate change, variability and modeling over Central America and Mexico. Atmosfera, 2018, 31, 185-188.	0.3	3

#	Article	IF	CITATIONS
109	Células de Circulação Meridional Durante os Eventos Extremos de Gelo Marinho Antártico. Revista Brasileira De Meteorologia, 2016, 31, 251-261.	0.2	3
110	WRF Sensitivity for Seasonal Climate Simulations of Precipitation Fields on the CORDEX South America Domain. Atmosphere, 2022, 13, 107.	1.0	3
111	Relationship between interhemispheric Rossby wave propagation and South Atlantic convergence zone during La Niña years. International Journal of Climatology, 2022, 42, 8652-8664.	1.5	3
112	Impacto da Rio-92 na produção cientÃfica da USP considerando o tópico Mudanças Climáticas. Estudos Avancados, 2012, 26, 341-350.	0.2	2
113	The <scp>highâ€frequency</scp> variability of Antarctic sea ice and polar cold air incursions over Amazonia. International Journal of Climatology, 2022, 42, 3397-3407.	1.5	2
114	Combined Oceanic Influences on Continental Climates. , 2020, , 216-257.		2
115	Intelligent Systems for Dengue, Chikungunya, and Zika Temporal and Spatio-Temporal Forecasting: A Contribution and a Brief Review. , 2022, , 299-331.		2
116	Spatiotemporal forecasting for dengue, chikungunya fever and Zika using machine learning and artificial expert committees based on meta-heuristics. Research on Biomedical Engineering, 2022, 38, 499-537.	1.5	2
117	A Space Domain Energetics Study for CO2Increasing Based on SRES-A2 Emission Scenario. Advances in Meteorology, 2013, 2013, 1-19.	0.6	1
118	Spatial distribution of spectral SST oscillations over the equatorial pacific in the period 1888–2014. International Journal of Climatology, 2021, 41, 3841-3864.	1.5	1
119	Summer dry events on synoptic and intraseasonal timescales in the Southeast Region of Brazil. , 0, , .		1
120	Analysis of Dry and Wet Episodes in Eastern South America during 1980-2018 Using SPEI. , 0, , .		1
121	A IMPORTÃ,NCIA DAS TELECONEXÕES PARA A PREVISÃ f O SAZONAL. Ci $ ilde{A}^a$ ncia E Natura, 2014, 36, .	0.0	1
122	Atmospheric blockings in Coupled Model Intercomparison Project Phase 5 models with different representations of Antarctic sea ice extent. Anais Da Academia Brasileira De Ciencias, 2022, 94, .	0.3	1
123	USP's Environmental Policy in the SDGs Approach. World Sustainability Series, 2021, , 415-433.	0.3	0
124	CLIMATOLOGIA DA FUNÇÃO FRONTOGENÉTICA SOBRE A AMÉRICA DO SUL EM UM CENÃRIO DE CLIMA PRESENTE E FUTURO. CIência E Natura, 2013, .	0.0	0
125	POSSÃVEIS RELAÇÕES ENTRE A VARIABILIDADE INTERANUAL DO GELO MARINHO ANTÃRTICO E A PRECIPITAÇÃ∱O NA AMÉRICA DO SUL. CIência E Natura, 2013,	0.0	0
126	INFLUÊNCIAS NA ALTERAÇÃO DO REGIME DE BLOQUEIOS ATMOSFÉRICOS SOBRE O SUL DO BRASIL EM U CENÃRIO DE CLIMA FUTURO. CIência E Natura, 2015, 37, .	IM 0.0	0

#	Article	IF	CITATIONS
127	TRABALHOS DESTACADOS NO V SIMPÓSIO INTERNACIONAL DE CLIMATOLOGIA (V SIC). Ciência E Natura, 2015, 37, .	0.0	0
128	AVALIAĂ‡ĂƒO DA CLIMATOLOGIA NA REGIÃO AMAZÔNICA NOS MODELOS DA FAMÃŁIA HIGEM. CIência E Natura, 2016, 38, 1054.	0.0	0
129	Analysis of Changes on Moisture Sources Contributions for Arctic Region in a FutureClimate Scenario Using GFDL/CM3 Model. , 0, , .		0
130	Detecção e atribuição das anomalias anuais dos Ãndices de extremos de chuva e temperaturas máxima e mÃnima diárias sobre o litoral de São Paulo/Brasil. Revista Brasileira De Geografia Fisica, 2021, 14, 3008-3043.	0.0	0