Haiying Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/181914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of pyrido[4,3–d]pyrimidine-2,4(1H,3H)-diones and pyrido[4,3–d]pyrimidine-2,4,5(1H,3H,6H)-triones by oxidative aromatization. Tetrahedron Letters, 2021, 67, 152847.	1.4	1
2	Progress in the development of domain selective inhibitors of the bromo and extra terminal domain family (BET) proteins. European Journal of Medicinal Chemistry, 2021, 226, 113853.	5.5	9
3	Progress in the Development of Small Molecular Inhibitors of Focal Adhesion Kinase (FAK). Journal of Medicinal Chemistry, 2020, 63, 14382-14403.	6.4	53
4	N-terminal modified cyclopeptidic mimetics of ApolloTBM as inhibitors of TRF2. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127401.	2.2	4
5	Development and optimization of a cascade of screening assays for inhibitors of TRF2. Analytical Biochemistry, 2020, 602, 113796.	2.4	3
6	Synthesis of Conformationally Constrained Dipeptide Mimetics with Azabicyclo[4,3,0]nonanone and Azabicyclo[5,3,0]decanone Scaffolds. Journal of Organic Chemistry, 2020, 85, 10182-10188.	3.2	2
7	Advances in inhibition of protein-protein interactions targeting hypoxia-inducible factor-1 for cancer therapy. Bioorganic and Medicinal Chemistry, 2019, 27, 1145-1158.	3.0	32
8	SM‑164 enhances the antitumor activity of adriamycin in human U2‑OS cells via downregulation of X‑linked inhibitor of apoptosis protein. Molecular Medicine Reports, 2019, 19, 5079-5086.	2.4	3
9	Development of Novel Anticancer Agents with a Scaffold of Tetrahydropyrido[4,3- <i>d</i>]pyrimidine-2,4-dione. ACS Medicinal Chemistry Letters, 2019, 10, 191-195.	2.8	13
10	Cyclic Peptidic Mimetics of Apollo Peptides Targeting Telomeric Repeat Binding Factor 2 (TRF2) and Apollo Interaction. ACS Medicinal Chemistry Letters, 2018, 9, 507-511.	2.8	10
11	Peptidomimetics for Targeting Protein–Protein Interactions between DOT1L and MLL Oncofusion Proteins AF9 and ENL. ACS Medicinal Chemistry Letters, 2018, 9, 895-900.	2.8	20
12	Synthesis of Isoquinolines from Benzimidates and Alkynes via Cobalt(III)-Catalyzed C–H Functionalization/Cyclization. Journal of Organic Chemistry, 2017, 82, 7643-7647.	3.2	28
13	Buried Hydrogen Bond Interactions Contribute to the High Potency of Complement Factor D Inhibitors. ACS Medicinal Chemistry Letters, 2016, 7, 1092-1096.	2.8	15
14	Potent and Selective Small-Molecule Inhibitors of cIAP1/2 Proteins Reveal That the Binding of Smac Mimetics to XIAP BIR3 Is Not Required for Their Effective Induction of Cell Death in Tumor Cells. ACS Chemical Biology, 2014, 9, 994-1002.	3.4	30
15	Potent Bivalent Smac Mimetics: Effect of the Linker on Binding to Inhibitor of Apoptosis Proteins (IAPs) and Anticancer Activity. Journal of Medicinal Chemistry, 2011, 54, 3306-3318.	6.4	44
16	Effects of estrogen on diverse stem cells and relevant intracellular mechanisms. Science China Life Sciences, 2010, 53, 542-547.	4.9	14
17	Cyclopeptide Smac mimetics as antagonists of IAP proteins. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3043-3046.	2.2	33
18	Nonpeptidic and Potent Small-Molecule Inhibitors of cIAP-1/2 and XIAP Proteins. Journal of Medicinal Chemistry, 2010, 53, 6361-6367.	6.4	43

HAIYING SUN

#	Article	IF	CITATIONS
19	Design of Small-Molecule Peptidic and Nonpeptidic Smac Mimetics. Accounts of Chemical Research, 2008, 41, 1264-1277.	15.6	144
20	Structure-Based Design, Synthesis, Evaluation, and Crystallographic Studies of Conformationally Constrained Smac Mimetics as Inhibitors of the X-linked Inhibitor of Apoptosis Protein (XIAP). Journal of Medicinal Chemistry, 2008, 51, 7169-7180.	6.4	82
21	Design, Synthesis, and Characterization of a Potent, Nonpeptide, Cell-Permeable, Bivalent Smac Mimetic That Concurrently Targets Both the BIR2 and BIR3 Domains in XIAP. Journal of the American Chemical Society, 2007, 129, 15279-15294.	13.7	191
22	Design, Synthesis, and Evaluation of a Potent, Cell-Permeable, Conformationally Constrained Second Mitochondria Derived Activator of Caspase (Smac) Mimetic. Journal of Medicinal Chemistry, 2006, 49, 7916-7920.	6.4	101
23	Structure-based design, synthesis and biochemical testing of novel and potent Smac peptido-mimetics. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 793-797.	2.2	53
24	Structure-Based Design of Potent, Conformationally Constrained Smac Mimetics. Journal of the American Chemical Society, 2004, 126, 16686-16687.	13.7	154
25	Structure-Based Design, Synthesis, and Evaluation of Conformationally Constrained Mimetics of the Second Mitochondria-Derived Activator of Caspase That Target the X-Linked Inhibitor of Apoptosis Protein/Caspase-9 Interaction Site. Journal of Medicinal Chemistry, 2004, 47, 4147-4150.	6.4	135
26	General Route to 2,4,5-Trisubstituted Piperidines from Enantiopure Î ² -Amino Esters. Total Synthesis of Pseudodistomin B Triacetate and Pseudodistomin F. Journal of Organic Chemistry, 2000, 65, 6009-6016.	3.2	55
27	Design, Synthesis, and Biological Evaluations of DOT1L Peptide Mimetics Targeting the Protein–Protein Interactions between DOT1L and MLL-AF9/MLL-ENL. Journal of Medicinal Chemistry, 0, , .	6.4	4