Carlos Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1818959/publications.pdf

Version: 2024-02-01

146 papers 6,362 citations

⁷⁶¹⁹⁶
40
h-index

71 g-index

156 all docs

156 docs citations

156 times ranked

7650 citing authors

#	Article	IF	CITATIONS
1	7,8-Dihydro-8-oxo-1, <i>N</i> 6-ethenoadenine: an exclusively Hoogsteen-paired thymine mimic in DNA that induces Aâ†'T transversions in <i>Escherichia coli</i>). Nucleic Acids Research, 2022, 50, 3056-3069.	6.5	3
2	De Novo Design of Selective Quadruplex–Duplex Junction Ligands and Structural Characterisation of Their Binding Mode: Targeting the G4 Hotâ€Spot. Chemistry - A European Journal, 2021, 27, 6204-6212.	1.7	16
3	De Novo Design of Selective Quadruplex–Duplex Junction Ligands and Structural Characterisation of Their Binding Mode: Targeting the G4 Hotâ€6pot. Chemistry - A European Journal, 2021, 27, 6106-6106.	1.7	0
4	Structural Effects of Incorporation of 2'â€Deoxyâ€2'2'â€Difluorodeoxycytidine (Gemcitabine) in A―and Bâ€Form Duplexes. Chemistry - A European Journal, 2021, 27, 7351-7355.	1.7	5
5	Frontispiece: Structural Effects of Incorporation of 2'â€Deoxyâ€2'2'â€Difluorodeoxycytidine (Gemcitabine) in A―and Bâ€Form Duplexes. Chemistry - A European Journal, 2021, 27, .	1.7	0
6	Potential G-quadruplexes and i-Motifs in the SARS-CoV-2. PLoS ONE, 2021, 16, e0250654.	1.1	30
7	Targeting ribosomal G-quadruplexes with naphthalene-diimides as RNA polymerase I inhibitors for colorectal cancer treatment. Cell Chemical Biology, 2021, 28, 1590-1601.e4.	2.5	12
8	Structure of i-Motif/Duplex Junctions at Neutral pH. Journal of the American Chemical Society, 2021, 143, 12919-12923.	6.6	22
9	The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function. PLoS Computational Biology, 2021, 17, e1009547.	1.5	6
10	Heterochromatin protein $1\hat{l}\pm$ interacts with parallel RNA and DNA G-quadruplexes. Nucleic Acids Research, 2020, 48, 682-693.	6.5	522
11	A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. ELife, 2020, 9, .	2.8	37
12	Glucose-nucleobase pairs within DNA: impact of hydrophobicity, alternative linking unit and DNA polymerase nucleotide insertion studies. Chemical Science, 2018, 9, 3544-3554.	3.7	2
13	Single-Stranded Condensation Stochastically Blocks G-Quadruplex Assembly in Human Telomeric RNA. Journal of Physical Chemistry Letters, 2018, 9, 2498-2503.	2.1	2
14	Structural properties and gene-silencing activity of chemically modified DNA–RNA hybrids with parallel orientation. Nucleic Acids Research, 2018, 46, 1614-1623.	6.5	3
15	Probing Synergistic Effects of DNA Methylation and 2′â€Î²â€Fluorination on iâ€Motif Stability. Chemistry - A European Journal, 2018, 24, 471-477.	1.7	16
16	i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Research, 2018, 46, 8038-8056.	6.5	277
17	How accurate are accurate force-fields for B-DNA?. Nucleic Acids Research, 2017, 45, gkw1355.	6.5	107
18	Stabilization of Telomeric lâ€Motif Structures by (2′ <i>S</i>)â€2â€2â€Deoxyâ€2′â€ <i>C</i> â€Methylcytid ChemBioChem, 2017, 18, 1123-1128.	line Residi 1.3	ues. 12

#	Article	IF	Citations
19	i-motif structures in long cytosine-rich sequences found upstream of the promoter region of the SMARCA4 gene. Biochimie, 2017, 140, 20-33.	1.3	14
20	$2\hat{a}$ €²-Fluoroarabinonucleic acid modification traps G-quadruplex and i-motif structures in human telomeric DNA. Nucleic Acids Research, 2017, 45, 11535-11546.	6.5	28
21	Prevalent Sequences in the Human Genome Can Form Mini i-Motif Structures at Physiological pH. Journal of the American Chemical Society, 2017, 139, 13985-13988.	6.6	68
22	The effect of the neutral cytidine protonated analogue pseudoisocytidine on the stability of i-motif structures. Scientific Reports, 2017, 7, 2772.	1.6	12
23	Mapping the affinity landscape of Thrombin-binding aptamers on 2′F-ANA/DNA chimeric G-Quadruplex microarrays. Nucleic Acids Research, 2017, 45, gkw1357.	6.5	40
24	Glucose–Nucleobase Pseudo Base Pairs: Biomolecular Interactions within DNA. Angewandte Chemie, 2016, 128, 8785-8789.	1.6	2
25	Glucose–Nucleobase Pseudo Base Pairs: Biomolecular Interactions within DNA. Angewandte Chemie - International Edition, 2016, 55, 8643-8647.	7.2	6
26	Finding the Right Candidate for the Right Position: A Fast NMR-Assisted Combinatorial Method for Optimizing Nucleic Acids Binders. Journal of the American Chemical Society, 2016, 138, 6463-6474.	6.6	5
27	Stabilization of i-motif structures by 2′-β-fluorination of DNA. Nucleic Acids Research, 2016, 44, 4998-5009.	6.5	59
28	Parmbsc1: a refined force field for DNA simulations. Nature Methods, 2016, 13, 55-58.	9.0	790
29	Understanding the effect of the nature of the nucleobase in the loops on the stability of the i-motif structure. Physical Chemistry Chemical Physics, 2016, 18, 7997-8004.	1.3	41
30	The structure of an endogenous Drosophila centromere reveals the prevalence of tandemly repeated sequences able to form i-motifs. Scientific Reports, 2015, 5, 13307.	1.6	58
31	Can A Denaturant Stabilize DNA? Pyridine Reverses DNA Denaturation in Acidic pH. Angewandte Chemie - International Edition, 2015, 54, 10488-10491.	7.2	7
32	Centromeric Alphaâ€Satellite DNA Adopts Dimeric iâ€Motif Structures Capped by AT Hoogsteen Base Pairs. Chemistry - A European Journal, 2015, 21, 9816-9824.	1.7	62
33	Interdependence of pyrene interactions and tetramolecular G4-DNA assembly. Organic and Biomolecular Chemistry, 2015, 13, 3742-3748.	1.5	16
34	Synthesis and Properties of 2′-Deoxy-2′,4′-difluoroarabinose-Modified Nucleic Acids. Journal of Organic Chemistry, 2015, 80, 3083-3091.	1.7	32
35	Locked 2′-Deoxy-2′,4′-Difluororibo Modified Nucleic Acids: Thermal Stability, Structural Studies, and siRNA Activity. ACS Chemical Biology, 2015, 10, 2016-2023.	1.6	40
36	Modulation of the stability of i-motif structures using an acyclic threoninol cytidine derivative. RSC Advances, 2015, 5, 63278-63281.	1.7	15

#	Article	IF	CITATIONS
37	The structural impact of DNA mismatches. Nucleic Acids Research, 2015, 43, 4309-4321.	6.5	113
38	Ametantrone-based compounds as potential regulators of Tau pre-mRNA alternative splicing. Organic and Biomolecular Chemistry, 2015, 13, 452-464.	1.5	8
39	Assembly Dependent Fluorescence Enhancing Nucleic Acids in Sequenceâ€Specific Detection of Doubleâ€Stranded DNA. ChemPlusChem, 2014, 79, 58-66.	1.3	12
40	Fundamental aspects of the nucleic acid i-motif structures. RSC Advances, 2014, 4, 26956-26980.	1.7	151
41	Discovery of Selective Ligands for Telomeric RNA G-quadruplexes (TERRA) through sup >F-NMR Based Fragment Screening. ACS Chemical Biology, 2014, 9, 1559-1566.	1.6	58
42	Combining Classical MD and QM Calculations to Elucidate Complex System Nucleation: A Twisted, Three-Stranded, Parallel \hat{l}^2 -Sheet Seeds Amyloid Fibril Conception. Journal of Physical Chemistry B, 2014, 118, 7312-7316.	1.2	15
43	Solution equilibria of cytosine- and guanine-rich sequences near the promoter region of the n-myc gene that contain stable hairpins within lateral loops. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 41-52.	1.1	39
44	Rigid $2\hat{a}\in^2$, $4\hat{a}\in^2$ -Difluororibonucleosides: Synthesis, Conformational Analysis, and Incorporation into Nascent RNA by HCV Polymerase. Journal of Organic Chemistry, 2014, 79, 5627-5635.	1.7	44
45	Effects of Sugar Functional Groups, Hydrophobicity, and Fluorination on Carbohydrate–DNA Stacking Interactions in Water. Journal of Organic Chemistry, 2014, 79, 2419-2429.	1.7	16
46	Backbone FCHâ‹â‹û Hydrogen Bonds in 2′Fâ€Substituted Nucleic Acids. Angewandte Chemie - Interr Edition, 2013, 52, 12065-12068.	national 7.2	44
47	Backbone FCHâ‹â‹â‹O Hydrogen Bonds in 2′Fâ€Substituted Nucleic Acids. Angewandte Chemie, 2013, 12287-12290.	125, 1.6	7
48	Carbohydrate–DNA Interactions at Gâ€Quadruplexes: Folding and Stability Changes by Attaching Sugars at the 5′â€End. Chemistry - A European Journal, 2013, 19, 1920-1927.	1.7	21
49	A Dynamic Combinatorial Approach for the Analysis of Weak Carbohydrate/Aromatic Complexes: Dissecting Facial Selectivity in CH/Ï€ Stacking Interactions. Journal of the American Chemical Society, 2013, 135, 3347-3350.	6.6	46
50	Dramatic Effect of Furanose C2′ Substitution on Structure and Stability: Directing the Folding of the Human Telomeric Quadruplex with a Single Fluorine Atom. Journal of the American Chemical Society, 2013, 135, 5344-5347.	6.6	62
51	Chemical Interrogation of Drug/RNA Complexes: From Chemical Reactivity to Drug Design. Angewandte Chemie - International Edition, 2013, 52, 3148-3151.	7.2	8
52	The effect of loop residues in four-stranded dimeric structures stabilized by minor groove tetrads. Organic and Biomolecular Chemistry, 2013, 11, 4804.	1.5	5
53	Mechanical unfolding of long human telomeric RNA (TERRA). Chemical Communications, 2013, 49, 6397.	2.2	23
54	NAFlex: a web server for the study of nucleic acid flexibility. Nucleic Acids Research, 2013, 41, W47-W55.	6.5	45

#	Article	IF	CITATIONS
55	On the Origin of the Eukaryotic Chromosome: The Role of Noncanonical DNA Structures in Telomere Evolution. Genome Biology and Evolution, 2013, 5, 1142-1150.	1.1	56
56	The solution structure of double helical arabino nucleic acids (ANA and 2′F-ANA): effect of arabinoses in duplex-hairpin interconversion. Nucleic Acids Research, 2012, 40, 9329-9339.	6.5	56
57	A minimal i-motif stabilized by minor groove G:T:G:T tetrads. Nucleic Acids Research, 2012, 40, 11737-11747.	6.5	33
58	An Arg-rich putative prebiotic protein is as stable as its Lys-rich variant. Archives of Biochemistry and Biophysics, 2012, 528, 118-126.	1.4	6
59	Apolar carbohydrates as DNA capping agents. Chemical Communications, 2012, 48, 2991.	2.2	11
60	Somatostatin Subtype-2 Receptor-Targeted Metal-Based Anticancer Complexes. Bioconjugate Chemistry, 2012, 23, 1838-1855.	1.8	55
61	Synthesis and Structural Characterization of Stable Branched DNA Gâ€Quadruplexes Using the Trebler Phosphoramidite. ChemistryOpen, 2012, 1, 106-114.	0.9	13
62	Conformation specificity and arene binding in a peptide composed only of Lys, Ile, Ala and Gly. European Biophysics Journal, 2012, 41, 63-72.	1.2	5
63	Highly Polar Carbohydrates Stack onto DNA Duplexes via CH/Ï€ Interactions. Journal of the American Chemical Society, 2011, 133, 1909-1916.	6.6	49
64	Novel dimeric structure of phage i-29-encoded protein p56: insights into uracil-DNA glycosylase inhibition. Nucleic Acids Research, 2011, 39, 9779-9788.	6.5	15
65	Self-association of cyclic oligonucleotides through G:T:G:T minor groove tetrads. Bioorganic and Medicinal Chemistry, 2010, 18, 4067-4073.	1.4	11
66	Structureâ€Based Design of Highly Crowded Ribostamycin/Kanamycin Hybrids as a New Family of Antibiotics. Chemistry - A European Journal, 2010, 16, 2986-2991.	1.7	12
67	Putative Oneâ€Pot Prebiotic Polypeptides with Ribonucleolytic Activity. Chemistry - A European Journal, 2010, 16, 5314-5323.	1.7	11
68	Structure and Stability of a Dimeric G-Quadruplex Formed by Cyclic Oligonucleotides. Journal of Nucleic Acids, 2010, 2010, 1-6.	0.8	4
69	Structural Properties of G,T-Parallel Duplexes. Journal of Nucleic Acids, 2010, 2010, 1-11.	0.8	4
70	Differential stability of 2′F-ANA•RNA and ANA•RNA hybrid duplexes: roles of structure, pseudohydrogen bonding, hydration, ion uptake and flexibility. Nucleic Acids Research, 2010, 38, 2498-2511.	6.5	65
71	A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix. Nucleic Acids Research, 2010, 38, 5226-5241.	6.5	30
72	Role of Aromatic Rings in the Molecular Recognition of Aminoglycoside Antibiotics: Implications for Drug Design. Journal of the American Chemical Society, 2010, 132, 12074-12090.	6.6	55

#	Article	IF	CITATIONS
73	NMR Spectroscopy Reveals that RNase A is Chiefly Denatured in 40% Acetic Acid: Implications for Oligomer Formation by 3D Domain Swapping. Journal of the American Chemical Society, 2010, 132, 1621-1630.	6.6	69
74	Role of Conserved Salt Bridges in Homeodomain Stability and DNA Binding. Journal of Biological Chemistry, 2009, 284, 23765-23779.	1.6	12
75	Conformationally rigid nucleoside probes help understand the role of sugar pucker and nucleobase orientation in the thrombin-binding aptamer. Nucleic Acids Research, 2009, 37, 5589-5601.	6.5	35
76	The use of conformationally rigid nucleoside probes to study the role of sugar pucker and nucleobase orientation in the thrombin binding aptamer. Nucleic Acids Symposium Series, 2009, 53, 109-110.	0.3	2
77	1H, 13C and 15N backbone and side chain resonance assignments of a Myxococcus xanthus anti-repressor with no known sequence homologues. Biomolecular NMR Assignments, 2009, 3, 37-40.	0.4	2
78	Carbodiimide EDC Induces Cross-Links That Stabilize RNase A C-Dimer against Dissociation: EDC Adducts Can Affect Protein Net Charge, Conformation, and Activity. Bioconjugate Chemistry, 2009, 20, 1459-1473.	1.8	34
79	Self-association of short DNA loops through minor groove C:G:G:C tetrads. Nucleic Acids Research, 2009, 37, 3264-3275.	6.5	27
80	Targeting the G-quadruplex-forming region near the P1 promoter in the human BCL-2 gene with the cationic porphyrin TMPyP4 and with the complementary C-rich strand. Biochimie, 2009, 91, 894-902.	1.3	42
81	Preparation of Ribonuclease S Domain-Swapped Dimers Conjugated with DNA and PNA: Modulating the Activity of Ribonucleases. Bioconjugate Chemistry, 2008, 19, 263-270.	1.8	5
82	NMR-Based Analysis of Aminoglycoside Recognition by the Resistance Enzyme ANT(4′): The Pattern of OH/NH3+Substitution Determines the Preferred Antibiotic Binding Mode and Is Critical for Drug Inactivation. Journal of the American Chemical Society, 2008, 130, 5086-5103.	6.6	18
83	Exploring the interaction of microcystin-LR with proteins and DNA. Toxicology in Vitro, 2008, 22, 1714-1718.	1.1	18
84	8-Amino guanine accelerates tetramolecular G-quadruplex formation. Chemical Communications, 2008, , 2926.	2.2	32
85	Getting specificity from simplicity in putative proteins from the prebiotic Earth. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14941-14946.	3.3	15
86	Solution equilibria of the i-motif-forming region upstream of the B-cell lymphoma-2 P1 promoter. Biochimie, 2007, 89, 1562-1572.	1.3	51
87	A simple NMR analysis of the protonation equilibrium that accompanies aminoglycoside recognition: Dramatic alterations in the neomycin-B protonation state upon binding to a 23-mer RNA aptamer. Chemical Communications, 2007, , 174-176.	2.2	23
88	Four-Stranded DNA Structures Can Be Stabilized by Two Different Types of Minor Groove G:C:G:C Tetrads. Journal of the American Chemical Society, 2007, 129, 2004-2014.	6.6	29
89	Triplex Formation Using Oligonucleotide Clamps Carrying 8-Aminopurines. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 979-983.	0.4	2
90	Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor. Molecular Microbiology, 2007, 63, 980-994.	1.2	24

#	Article	IF	Citations
91	Exploring the Use of Conformationally Locked Aminoglycosides as a New Strategy to Overcome Bacterial Resistance. Journal of the American Chemical Society, 2006, 128, 100-116.	6.6	73
92	Induced-Fit Recognition of DNA by Small Circular Oligonucleotides. Chemistry - A European Journal, 2006, 12, 4035-4042.	1.7	6
93	Destabilization of Quadruplex DNA by 8-Aminoguanine. ChemBioChem, 2006, 7, 46-48.	1.3	20
94	Selective Platination of Modified Oligonucleotides and Duplex Cross-Links. Angewandte Chemie - International Edition, 2006, 45, 8194-8197.	7.2	18
95	Formation, Structure, and Dissociation of the Ribonuclease S Three-dimensional Domain-swapped Dimer Journal of Biological Chemistry, 2006, 281, 9400-9406.	1.6	26
96	Molecular Recognition of Aminoglycoside Antibiotics by Bacterial Defence Proteins: NMR Study of the Structural and Conformational Features of Streptomycin Inactivation byBacillus subtilis Aminoglycoside-6-adenyl Transferase. Chemistry - A European Journal, 2005, 11, 5102-5113.	1.7	19
97	Structure of the Functional Domain of φ29 Replication Organizer. Journal of Biological Chemistry, 2005, 280, 20730-20739.	1.6	8
98	Effect of Bulky Lesions on DNA. Journal of Biological Chemistry, 2004, 279, 24552-24560.	1.6	18
99	X-ray and NMR Studies of the DNA Oligomer d(ATATAT):  Hoogsteen Base Pairing in Duplex DNA. Biochemistry, 2004, 43, 4092-4100.	1.2	56
100	Peptide AS-48: Prototype of a New Class of Cyclic Bacteriocins. Current Protein and Peptide Science, 2004, 5, 399-416.	0.7	169
101	Structures and Stabilities of Small DNA Dumbbells with Watson-Crick and Hoogsteen Base Pairs. ChemBioChem, 2003, 4, 623-632.	1.3	14
102	Solution Structure and Stability of Tryptophan-Containing Nucleopeptide Duplexes. ChemBioChem, 2003, 4, 40-49.	1.3	16
103	Structure and dynamics of the potato carboxypeptidase inhibitor by 1H and 15N NMR. Proteins: Structure, Function and Bioinformatics, 2003, 50, 410-422.	1.5	19
104	Four-Stranded DNA Structure Stabilized by a Novel G:C:A:T Tetrad. Journal of the American Chemical Society, 2003, 125, 5654-5662.	6.6	29
105	Solution structure and stability of a disulfide cross-linked nucleopeptide duplex. Chemical Communications, 2003, , 2558-2559.	2.2	4
106	Properties of Triple Helices Formed by Oligonucleotides Containing 8-Aminopurines. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 645-648.	0.4	3
107	Antiparallel Triple Helices. Structural Characteristics and Stabilization by 8-Amino Derivatives. Journal of the American Chemical Society, 2003, 125, 16127-16138.	6.6	38
108	Properties of triple helices formed by parallel-stranded hairpins containing 8-aminopurines. Nucleic Acids Research, 2002, 30, 2609-2619.	6.5	39

#	Article	IF	CITATIONS
109	Hoogsteen-Based Parallel-Stranded Duplexes of DNA. Effect of 8-Amino-purine Derivatives. Journal of the American Chemical Society, 2002, 124, 3133-3142.	6.6	38
110	Experimental evidence for the existence of non-exo-anomeric conformations in branched oligosaccharides: the neomycin-B case. Chemical Communications, 2002, , 2232-2233.	2.2	3
111	Multivariate curve resolution: a powerful tool for the analysis of conformational transitions in nucleic acids. Nucleic Acids Research, 2002, 30, 92e-92.	6.5	66
112	Experimental Evidence for the Existence of Non-exo-Anomeric Conformations in Branched Oligosaccharides: NMR Analysis of the Structure and Dynamics of Aminoglycosides of the Neomycin Family. Chemistry - A European Journal, 2002, 8, 5228-5240.	1.7	22
113	The Impact of R53C Mutation on the Three-Dimensional Structure, Stability, and DNA-Binding Properties of the Human Hesx-1 Homeodomain. ChemBioChem, 2002, 3, 726.	1.3	12
114	Three-Dimensional Solution Structure and Stability of Thioredoxin m from Spinach. Biochemistry, 2001, 40, 15246-15256.	1.2	13
115	Conformationally restricted PACAP27 analogues incorporating type II/II′ IBTM β-Turn Mimetics. Synthesis, NMR Structure Determination, and Binding Affinity. Bioorganic and Medicinal Chemistry, 2001, 9, 3173-3183.	1.4	10
116	Solution structure of a DNA duplex with a chiral alkyl phosphonate moiety. Nucleic Acids Research, 2001, 29, 2973-2985.	6.5	33
117	Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11221-11226.	3.3	170
118	DNA-triplex stabilizing properties of 8-aminoguanine. Nucleic Acids Research, 2000, 28, 4531-4539.	6.5	36
119	Model studies towards carbohydrate–base pair recognition. Relevance of hydrogen–bonding cooperativity. Chemical Communications, 2000, , 411-412.	2.2	15
120	Dimeric Solution Structure of Two Cyclic Octamers:Â Four-Stranded DNA Structures Stabilized by A:T:A:T and G:C:G:C Tetrads. Journal of the American Chemical Society, 2000, 122, 12732-12742.	6.6	42
121	1H NMR Structural Characterization of a Nonmitogenic, Vasodilatory, Ischemia-Protector and Neuromodulatory Acidic Fibroblast Growth Factor. Biochemistry, 2000, 39, 4982-4993.	1.2	41
122	Structural Differences betweenSaccharomyces cerevisiaeRibosomal Stalk Proteins P1 and P2 Support Their Functional Diversityâ€. Biochemistry, 2000, 39, 8935-8943.	1.2	22
123	Crystal and Solution Structure of the Bi-Loop Motif in Cyclic Octanucleotides. Nucleosides & Nucleotides, 1999, 18, 1601-1602.	0.5	0
124	NMR Structure of Two Cyclic Oligonucleotides. A Monomerâ^'Dimer Equilibrium between Dumbbell and Quadruplex Structures. Journal of the American Chemical Society, 1998, 120, 2176-2177.	6.6	12
125	NMR investigations of protein-carbohydrate interactions: refined three-dimensional structure of the complex between hevein and methyl Â-chitobioside. Glycobiology, 1998, 8, 569-577.	1.3	75
126	NMR Solution Structure of the 205â^'316 C-Terminal Fragment of Thermolysin. An Example of Dimerization Coupled to Partial Unfoldingâ€. Biochemistry, 1997, 36, 11975-11983.	1.2	6

#	Article	IF	CITATIONS
127	Three-Dimensional Solution Structure and Stability of Phage 434 Cro Proteinâ€,‡. Biochemistry, 1997, 36, 6424-6436.	1.2	20
128	The Exchangeable Yeast Ribosomal Acidic Protein YP2β Shows Characteristics of a Partly Folded State under Physiological Conditions. Biochemistry, 1997, 36, 9625-9635.	1.2	46
129	NMR Solution Structures of Ribonuclease A and Its Complexes with Mono- and Dinucleotides. , 1997 , , $343-381$.		5
130	1H NMR Assignment and Global Fold of Napin Bnlb, a Representative 2S Albumin Seed Proteinâ€. Biochemistry, 1996, 35, 15672-15682.	1.2	103
131	Threeâ€dimensional structure of the complexes of ribonuclease A with 2′,5′â€CpA and 3′,5′â€d(CpA) solution, as obtained by NMR and restrained molecular dynamics. Protein Science, 1996, 5, 1633-1647.	in aqueou 3.1	s ₃₈
132	Dynamic Structure of Nucleic Acid Duplexes., 1996,, 191-203.		0
133	1H-nmr studies on the structure of a new thionin from barley endosperm. Biopolymers, 1995, 36, 751-763.	1.2	34
134	Structure and Dynamics of a DNA.cntdot.RNA Hybrid Duplex with a Chiral Phosphorothioate Moiety: NMR and Molecular Dynamics with Conventional and Time-Averaged Restraints. Biochemistry, 1995, 34, 4969-4982.	1.2	113
135	NMR Solution Structure of the C-Terminal Fragment 255-316 of Thermolysin: A Dimer Formed by Subunits Having the Native Structure. Biochemistry, 1994, 33, 14834-14847.	1.2	29
136	Structural Study of a DNA.cntdot.RNA Hybrid Duplex with a Chiral Phosphorothioate Moiety by NMR: Extraction of Distance and Torsion Angle Constraints and Imino Proton Exchange Rates. Biochemistry, 1994, 33, 11062-11072.	1,2	82
137	CD and 1H-NMR studies on the conformational properties of peptide fragments from the C-terminal domain of thermolysin. FEBS Journal, 1993, 211, 569-581.	0.2	66
138	Refined solution structure of bovine pancreatic Ribonuclease A by1H NMR methods. Sidechain dynamics. Applied Magnetic Resonance, 1993, 4, 385-415.	0.6	14
139	High-resolution Three-dimensional Structure of Ribonuclease A in Solution by Nuclear Magnetic Resonance Spectroscopy. Journal of Molecular Biology, 1993, 229, 722-734.	2.0	155
140	Solution structure of .gamma.1-H and .gamma.1-P thionins from barley and wheat endosperm determined by proton NMR: a structural motif common to toxic arthropod proteins. Biochemistry, 1993, 32, 715-724.	1.2	217
141	NMR chemical shifts: a tool to characterize distortions of peptide and protein helices. Journal of the American Chemical Society, 1992, 114, 9676-9677.	6.6	46
142	Constant-time NOESY: An aid in the analysis of protein NMR spectra. Journal of Biomolecular NMR, 1992, 2, 647-653.	1.6	8
143	Peptide group chemical shift computation. Magnetic Resonance in Chemistry, 1992, 30, 1012-1018.	1.1	26
144	Toward an NMR R factor. Journal of Magnetic Resonance, 1991, 91, 659-664.	0.5	30

#	Article	IF	CITATIONS
145	3D structure of bovine pancreatic ribonuclease A in aqueous solution: An approach to tertiary structure determination from a small basis of 1H NMR NOE correlations. Journal of Biomolecular NMR, 1991, 1, 283-298.	1.6	43
146	Sequential 1H-NMR assignment and solution structure of bovine pancreatic ribonuclease A. FEBS Journal, 1989, 183, 623-638.	0.2	69