Susanne Krasemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1818822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of SARS-CoV-2 genomic and subgenomic RNA in retina and optic nerve of patients with COVID-19. British Journal of Ophthalmology, 2022, 106, 1313-1317.	3.9	30
2	The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports, 2022, 17, 307-320.	4.8	138
3	CMYA5 is a novel interaction partner of FHL2 in cardiac myocytes. FEBS Journal, 2022, 289, 4622-4645.	4.7	6
4	NeuroCOVID: Insights into Neuroinvasion and Pathophysiology. Clinical and Translational Neuroscience, 2022, 6, 10.	0.9	1
5	Response to: SARS-CoV-2 and type I interferon signaling in brain endothelial cells: Blurring the lines between friend or foe. Stem Cell Reports, 2022, 17, 1014-1015.	4.8	5
6	Presence of SARS-CoV-2 RNA in the Cornea of Viremic Patients With COVID-19. JAMA Ophthalmology, 2021, 139, 383.	2.5	62
7	Inefficient Placental Virus Replication and Absence of Neonatal Cell-Specific Immunity Upon Sars-CoV-2 Infection During Pregnancy. Frontiers in Immunology, 2021, 12, 698578.	4.8	22
8	Targeting Runt-Related Transcription Factor 1 Prevents Pulmonary Fibrosis and Reduces Expression of Severe Acute Respiratory Syndrome Coronavirus 2 Host Mediators. American Journal of Pathology, 2021, 191, 1193-1208.	3.8	14
9	Intermittent Optogenetic Tachypacing of Atrial Engineered Heart Tissue Induces Only Limited Electrical Remodelling. Journal of Cardiovascular Pharmacology, 2021, 77, 291-299.	1.9	11
10	Inoculation route-dependent Lassa virus dissemination and shedding dynamics in the natural reservoir – <i>Mastomys natalensis</i> . Emerging Microbes and Infections, 2021, 10, 2313-2325.	6.5	8
11	Reactive Astrocytes Contribute to Alzheimer's Disease-Related Neurotoxicity and Synaptotoxicity in a Neuron-Astrocyte Co-culture Assay. Frontiers in Cellular Neuroscience, 2021, 15, 739411.	3.7	7
12	Deficits in developmental neurogenesis and dendritic spine maturation in mice lacking the serine protease inhibitor neuroserpin. Molecular and Cellular Neurosciences, 2020, 102, 103420.	2.2	25
13	Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurology, The, 2020, 19, 919-929.	10.2	957
14	Severe Human Lassa Fever Is Characterized by Nonspecific T-Cell Activation and Lymphocyte Homing to Inflamed Tissues. Journal of Virology, 2020, 94, .	3.4	14
15	Complement 3+-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathologica Communications, 2019, 7, 83.	5.2	84
16	Phagocytosis of Apoptotic Cells Is Specifically Upregulated in ApoE4 Expressing Microglia in vitro. Frontiers in Cellular Neuroscience, 2019, 13, 181.	3.7	26
17	Analysis of fibrosis in control or pressure overloaded rat hearts after mechanical unloading by heterotopic heart transplantation. Scientific Reports, 2019, 9, 5710.	3.3	7
18	Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles in malignant brain tumours. Journal of Extracellular Vesicles, 2019, 8, 1588555.	12.2	86

SUSANNE KRASEMANN

#	Article	IF	CITATIONS
19	Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nature Neuroscience, 2019, 22, 191-204.	14.8	358
20	Comparative pathogenesis of Ebola virus and Reston virus infection in humanized mice. JCI Insight, 2019, 4, .	5.0	26
21	Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Science Advances, 2018, 4, eaar2766.	10.3	416
22	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
23	Microglia Increase Inflammatory Responses in iPSC-Derived Human BrainSpheres. Frontiers in Microbiology, 2018, 9, 2766.	3.5	88
24	Muskelin Coordinates PrPC Lysosome versus Exosome Targeting and Impacts Prion Disease Progression. Neuron, 2018, 99, 1155-1169.e9.	8.1	39
25	Humanized Mice Reproduce Acute and Persistent Human Adenovirus Infection. Journal of Infectious Diseases, 2017, 215, 70-79.	4.0	15
26	Ebola virus infection kinetics in chimeric mice reveal a key role of T cells as barriers for virus dissemination. Scientific Reports, 2017, 7, 43776.	3.3	31
27	<scp>TREM</scp> 2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Reports, 2017, 18, 1186-1198.	4.5	240
28	The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity, 2017, 47, 566-581.e9.	14.3	1,741
29	Activation of microglia by retroviral infection correlates with transient clearance of prions from the brain but does not change incubation time. Brain Pathology, 2017, 27, 590-602.	4.1	19
30	Exosomes and the Prion Protein: More than One Truth. Frontiers in Neuroscience, 2017, 11, 194.	2.8	60
31	YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Molecular Neurodegeneration, 2017, 12, 83.	10.8	140
32	Exosomes in Prion Diseases. Neuromethods, 2017, , 197-207.	0.3	0
33	Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever. PLoS Pathogens, 2016, 12, e1005656.	4.7	41
34	Exosomal cellular prion protein drives fibrillization of amyloid beta and counteracts amyloid betaâ€mediated neurotoxicity. Journal of Neurochemistry, 2016, 137, 88-100.	3.9	117
35	Secretory pathway retention of mutant prion protein induces p38-MAPK activation and lethal disease in mice. Scientific Reports, 2016, 6, 24970.	3.3	22
36	Mesenchymal Stromal/Stem Cells Do Not Ameliorate Experimental Autoimmune Encephalomyelitis and Are Not Detectable in the Central Nervous System of Transplanted Mice. Stem Cells and Development, 2016, 25, 1134-1148.	2.1	17

SUSANNE KRASEMANN

#	Article	IF	CITATIONS
37	Efficacy of Favipiravir Alone and in Combination With Ribavirin in a Lethal, Immunocompetent Mouse Model of Lassa Fever. Journal of Infectious Diseases, 2016, 213, 934-938.	4.0	95
38	No obvious phenotypic abnormalities in mice lacking the Pate4 gene. Biochemical and Biophysical Research Communications, 2016, 469, 1069-1074.	2.1	3
39	Towards a Tissue-Engineered Contractile Fontan-Conduit: The Fate of Cardiac Myocytes in the Subpulmonary Circulation. PLoS ONE, 2016, 11, e0166963.	2.5	15
40	Comment on "Primary Central Nervous System (CNS) Lymphoma B Cell Receptors Recognize CNS Proteins― Journal of Immunology, 2015, 195, 4549-4550.	0.8	5
41	Shedding light on prion disease. Prion, 2015, 9, 244-256.	1.8	17
42	Targeting mi <scp>R</scp> â€155 restores abnormal microglia and attenuates disease in <scp>SOD</scp> 1 mice. Annals of Neurology, 2015, 77, 75-99.	5.3	295
43	Upregulation of Shiga Toxin Receptor <scp>CD</scp> 77/ <scp>G</scp> b3 and Interleukinâ€1β Expression in the Brain of <scp>EHEC</scp> Patients with Hemolytic Uremic Syndrome and Neurologic Symptoms. Brain Pathology, 2015, 25, 146-156.	4.1	12
44	The sheddase ADAM10 is a potent modulator of prion disease. ELife, 2015, 4, .	6.0	66
45	Evaluation of Antiviral Efficacy of Ribavirin, Arbidol, and T-705 (Favipiravir) in a Mouse Model for Crimean-Congo Hemorrhagic Fever. PLoS Neglected Tropical Diseases, 2014, 8, e2804.	3.0	138
46	The lectin OS-9 delivers mutant neuroserpin to endoplasmic reticulum associated degradation in familial encephalopathy with neuroserpin inclusion bodies. Neurobiology of Aging, 2014, 35, 2394-2403.	3.1	23
47	High molecular mass assemblies of amyloid-β oligomers bind prion protein in patients with Alzheimer's disease. Brain, 2014, 137, 873-886.	7.6	96
48	No reactivation of JCV and CMV infections in the temporal cortex and cerebellum of sporadic Creutzfeldt-Jakob disease patients. American Journal of Neurodegenerative Disease, 2014, 3, 152-7.	0.1	0
49	Myositis facilitates preclinical accumulation of pathological prion protein in muscle. Acta Neuropathologica Communications, 2013, 1, 78.	5.2	1
50	Roles of endoproteolytic αâ€cleavage and shedding of the prion protein in neurodegeneration. FEBS Journal, 2013, 280, 4338-4347.	4.7	48
51	BSE-associated Prion-Amyloid Cardiomyopathy in Primates. Emerging Infectious Diseases, 2013, 19, 985-988.	4.3	10
52	Protease-sensitive prion species in neoplastic spleens of prion-infected mice with uncoupling of PrPSc and prion infectivity. Journal of General Virology, 2013, 94, 453-463.	2.9	13
53	Deficiency in Serine Protease Inhibitor Neuroserpin Exacerbates Ischemic Brain Injury by Increased Postischemic Inflammation. PLoS ONE, 2013, 8, e63118.	2.5	37
54	Persistent retroviral infection with MoMuLV influences neuropathological signature and phenotype of prion disease. Acta Neuropathologica, 2012, 124, 111-126.	7.7	14

#	Article	IF	CITATIONS
55	Proteolytic processing of the prion protein in health and disease. American Journal of Neurodegenerative Disease, 2012, 1, 15-31.	0.1	58
56	Non-human primates in prion research. , 2012, 50, 57-67.		3
57	Preclinical Deposition of Pathological Prion Protein in Muscle of Experimentally Infected Primates. PLoS ONE, 2010, 5, e13906.	2.5	19
58	Understanding the natural variability of prion diseases. Vaccine, 2007, 25, 5631-5636.	3.8	23
59	Generation of monoclonal antibodies against prion proteins with an unconventional nucleic acid-based immunization strategy. Journal of Biotechnology, 1999, 73, 119-129.	3.8	48
60	Generation of Monoclonal Antibodies against Human Prion Proteins in PrPO/O Mice. Molecular Medicine, 1996, 2, 725-734.	4.4	157
61	Induction of antibodies against human prion proteins (PrP) by DNA-mediated immunization of mice. Journal of Immunological Methods, 1996, 199, 109-118.	1.4	60
62	Generation of monoclonal antibodies against human prion proteins in PrPO/O mice. Molecular Medicine, 1996, 2, 725-34.	4.4	48
63	Prion disease associated with a novel nine octapeptide repeat insertion in the PRNP gene. Molecular Brain Research, 1995, 34, 173-176.	2.3	104
64	Young COVID-19 Patients Show a Higher Degree of Microglial Activation When Compared to Controls. Frontiers in Neurology, 0, 13, .	2.4	7