Jeffrey A Bluestone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1817828/publications.pdf

Version: 2024-02-01

94 papers 32,687 citations

68 h-index 94 g-index

102 all docs 102 docs citations

times ranked

102

30829 citing authors

#	Article	IF	CITATIONS
1	CD28/B7 SYSTEM OF T CELL COSTIMULATION. Annual Review of Immunology, 1996, 14, 233-258.	9.5	2,466
2	CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. Journal of Experimental Medicine, 2006, 203, 1701-1711.	4.2	2,292
3	B7/CD28 Costimulation Is Essential for the Homeostasis of the CD4+CD25+ Immunoregulatory T Cells that Control Autoimmune Diabetes. Immunity, 2000, 12, 431-440.	6.6	1,884
4	Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 2008, 455, $1109-1113$.	13.7	1,745
5	Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nature Immunology, 2009, 10, 1000-1007.	7.0	1,251
6	Anti-CD3 Monoclonal Antibody in New-Onset Type 1 Diabetes Mellitus. New England Journal of Medicine, 2002, 346, 1692-1698.	13.9	1,118
7	In Vitro–expanded Antigen-specific Regulatory T Cells Suppress Autoimmune Diabetes. Journal of Experimental Medicine, 2004, 199, 1455-1465.	4.2	1,082
8	Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature, 2010, 464, 1293-1300.	13.7	998
9	COMPLEXITIES OF CD28/B7: CTLA-4 COSTIMULATORY PATHWAYS IN AUTOIMMUNITY AND TRANSPLANTATION. Annual Review of Immunology, 2001, 19, 225-252.	9.5	973
10	Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nature Medicine, 2014, 20, 62-68.	15.2	930
11	The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nature Immunology, 2008, 9, 239-244.	7.0	880
12	Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Science Translational Medicine, 2015, 7, 315ra189.	5.8	767
13	Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nature Immunology, 2006, 7, 83-92.	7.0	718
14	Central Role of Defective Interleukin-2 Production in the Triggering of Islet Autoimmune Destruction. Immunity, 2008, 28, 687-697.	6.6	646
15	CD28 Costimulation: From Mechanism to Therapy. Immunity, 2016, 44, 973-988.	6.6	607
16	Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10437-10442.	3.3	600
17	An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. New England Journal of Medicine, 2019, 381, 603-613.	13.9	584
18	Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. Journal of Experimental Medicine, 2012, 209, 1713-1722.	4.2	553

#	Article	IF	CITATIONS
19	Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. Journal of Experimental Medicine, 2008, 205, 1983-1991.	4.2	482
20	Loss of integrin $\hat{l}\pm\nu\hat{l}^28$ on dendritic cells causes autoimmunity and colitis in mice. Nature, 2007, 449, 361-365.	13.7	463
21	Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nature Reviews Immunology, 2016, 16, 149-163.	10.6	409
22	Revisiting IL-2: Biology and therapeutic prospects. Science Immunology, 2018, 3, .	5.6	398
23	Collateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors. Diabetes, 2018, 67, 1471-1480.	0.3	386
24	Treg cell-based therapies: challenges and perspectives. Nature Reviews Immunology, 2020, 20, 158-172.	10.6	383
25	IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. Journal of Experimental Medicine, 2010, 207, 1871-1878.	4.2	368
26	Interleukin-33 and Interferon- \hat{l}^3 Counter-Regulate Group 2 Innate Lymphoid Cell Activation during Immune Perturbation. Immunity, 2015, 43, 161-174.	6.6	368
27	Is autoimmunity the Achilles' heel of cancer immunotherapy?. Nature Medicine, 2017, 23, 540-547.	15.2	367
28	CD3-specific antibodies: a portal to the treatment of autoimmunity. Nature Reviews Immunology, 2007, 7, 622-632.	10.6	361
29	Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nature Immunology, 2015, 16, 188-196.	7.0	347
30	Expansion of Human Regulatory T-Cells From Patients With Type 1 Diabetes. Diabetes, 2009, 58, 652-662.	0.3	333
31	Self-antigen-Driven Activation Induces Instability of Regulatory T Cells during an Inflammatory Autoimmune Response. Immunity, 2013, 39, 949-962.	6.6	326
32	Next-generation regulatory T cell therapy. Nature Reviews Drug Discovery, 2019, 18, 749-769.	21.5	311
33	Sequential development of interleukin 2–dependent effector and regulatory T cells in response to endogenous systemic antigen. Journal of Experimental Medicine, 2005, 202, 1375-1386.	4.2	271
34	Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet, The, 2020, 395, 1627-1639.	6. 3	266
35	Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science, 2018, 359, 1037-1042.	6.0	254
36	The Chromatin-Modifying Enzyme Ezh2 Is Critical for the Maintenance of Regulatory T Cell Identity after Activation. Immunity, 2015, 42, 227-238.	6.6	253

#	Article	lF	Citations
37	Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature, 2017, 549, 111-115.	13.7	247
38	The functional plasticity of T cell subsets. Nature Reviews Immunology, 2009, 9, 811-816.	10.6	241
39	Expansion of Functional Endogenous Antigen-Specific CD4+CD25+ Regulatory T Cells from Nonobese Diabetic Mice. Journal of Immunology, 2005, 175, 3053-3059.	0.4	232
40	Suppression of Disease in New Zealand Black/New Zealand White Lupus-Prone Mice by Adoptive Transfer of Ex Vivo Expanded Regulatory T Cells. Journal of Immunology, 2006, 177, 1451-1459.	0.4	231
41	How do CD4+CD25+ regulatory T cells control autoimmunity?. Current Opinion in Immunology, 2005, 17, 638-642.	2.4	221
42	Divergent Phenotypes of Human Regulatory T Cells Expressing the Receptors TIGIT and CD226. Journal of Immunology, 2015, 195, 145-155.	0.4	219
43	Targeting EZH2 Reprograms Intratumoral Regulatory T Cells to Enhance Cancer Immunity. Cell Reports, 2018, 23, 3262-3274.	2.9	207
44	Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nature Biotechnology, 2020, 38, 44-49.	9.4	198
45	Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Science Translational Medicine, 2014, 6, 258ra142.	5.8	193
46	Regulatory T-Cell Therapy in Transplantation: Moving to the Clinic. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a015552-a015552.	2.9	190
47	Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nature Immunology, 2011, 12, 898-907.	7.0	179
48	The Efficiency of CD4 Recruitment to Ligand-engaged TCR Controls the Agonist/Partial Agonist Properties of Peptide–MHC Molecule Ligands. Journal of Experimental Medicine, 1997, 185, 219-230.	4.2	166
49	Effect of Immune Deficiency on Lipoproteins and Atherosclerosis in Male Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1011-1016.	1.1	165
50	A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nature Medicine, 2018, 24, 1005-1014.	15.2	165
51	The functional significance of epitope spreading and its regulation by co-stimulatory molecules. Immunological Reviews, 1998, 164, 63-72.	2.8	159
52	Targeting ABL-IRE1Î \pm Signaling Spares ER-Stressed Pancreatic Î 2 Cells to Reverse Autoimmune Diabetes. Cell Metabolism, 2017, 25, 883-897.e8.	7.2	149
53	Regulatory T cell control of systemic immunity and immunotherapy response in liver metastasis. Science Immunology, 2020, 5, .	5. 6	148
54	Therapeutic vaccination using CD4+CD25+ antigen-specific regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14622-14626.	3. 3	143

#	Article	IF	CITATIONS
55	The Complexities of T-Cell Co-stimulation: CD28 and Beyond. Immunological Reviews, 1996, 153, 155-182.	2.8	142
56	CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature, 2020, 582, 416-420.	13.7	141
57	Human Antigen-Specific Regulatory T Cells Generated by T Cell Receptor Gene Transfer. PLoS ONE, 2010, 5, e11726.	1.1	139
58	The Balancing Act between Cancer Immunity and Autoimmunity in Response to Immunotherapy. Cancer Immunology Research, 2018, 6, 1445-1452.	1.6	132
59	Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: The next frontier. Journal of Allergy and Clinical Immunology, 2018, 142, 1710-1718.	1.5	124
60	T _{reg} cellsâ€"the next frontier of cell therapy. Science, 2018, 362, 154-155.	6.0	124
61	CD4+ Group 1 Innate Lymphoid Cells (ILC) Form a Functionally Distinct ILC Subset That Is Increased in Systemic Sclerosis. Journal of Immunology, 2016, 196, 2051-2062.	0.4	103
62	Adoptive Treg Cell Therapy in a Patient With Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2019, 71, 431-440.	2.9	103
63	Interleukin-5–producing group 2 innate lymphoid cells control eosinophilia induced by interleukin-2 therapy. Blood, 2014, 124, 3572-3576.	0.6	100
64	Murine Pancreatic Islet Isolation. Journal of Visualized Experiments, 2007, , 255.	0.2	96
65	Regulatory T cells: stability revisited. Trends in Immunology, 2011, 32, 301-306.	2.9	95
66	The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight, 2021, 6, .	2.3	91
67	Avidity and Bystander Suppressive Capacity of Human Regulatory T Cells Expressing De Novo Autoreactive T-Cell Receptors in Type 1 Diabetes. Frontiers in Immunology, 2017, 8, 1313.	2.2	81
68	Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science, 2021, 373, 510-516.	6.0	81
69	Transplantation of Pancreatic Islets Into the Kidney Capsule of Diabetic Mice. Journal of Visualized Experiments, 2007, , 404.	0.2	73
70	Antithymocyte globulin therapy for patients with recent-onset type 1 diabetes: 2Âyear results of a randomised trial. Diabetologia, 2016, 59, 1153-1161.	2.9	72
71	A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells. Immunity, 2019, 50, 362-377.e6.	6.6	72
72	ICOS costimulation: it's not just for TH2 cells anymore. Nature Immunology, 2001, 2, 573-574.	7.0	68

#	Article	IF	CITATIONS
73	Tolerance in the Age of Immunotherapy. New England Journal of Medicine, 2020, 383, 1156-1166.	13.9	67
74	Innate Antiviral Host Defense Attenuates TGF- \hat{l}^2 Function through IRF3-Mediated Suppression of Smad Signaling. Molecular Cell, 2014, 56, 723-737.	4.5	64
75	Revealing the specificity of regulatory T cells in murine autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5265-5270.	3.3	64
76	Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy. Molecular Therapy - Methods and Clinical Development, 2017, 4, 178-191.	1.8	62
77	The CD28-Transmembrane Domain Mediates Chimeric Antigen Receptor Heterodimerization With CD28. Frontiers in Immunology, 2021, 12, 639818.	2.2	60
78	Current and Future Immunomodulation Strategies to Restore Tolerance in Autoimmune Diseases. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007542-a007542.	2.3	59
79	The immune system in Duchenne muscular dystrophy: Friend or foe. Rare Diseases (Austin, Tex), 2015, 3, e1010966.	1.8	59
80	Engineering a Single-Agent Cytokine/Antibody Fusion That Selectively Expands Regulatory T Cells for Autoimmune Disease Therapy. Journal of Immunology, 2018, 201, 2094-2106.	0.4	58
81	Functional CRISPR dissection of gene networks controlling human regulatory T cell identity. Nature Immunology, 2020, 21, 1456-1466.	7. 0	57
82	The Immune Tolerance Network at 10 years: tolerance research at the bedside. Nature Reviews Immunology, 2010, 10, 797-803.	10.6	55
83	Engineering Therapeutic T Cells: From Synthetic Biology to Clinical Trials. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 305-330.	9.6	54
84	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	2.2	43
85	Precision Engineering of an Anti-HLA-A2 Chimeric Antigen Receptor in Regulatory T Cells for Transplant Immune Tolerance. Frontiers in Immunology, 2021, 12, 686439.	2.2	37
86	Aberrant Innate Immune Activation following Tissue Injury Impairs Pancreatic Regeneration. PLoS ONE, 2014, 9, e102125.	1.1	36
87	Therapeutic effectiveness of the immunity elicited by P815 tumor cells engineered to express the B7-2 costimulatory molecule. Cancer Immunology, Immunotherapy, 1996, 42, 161-169.	2.0	25
88	TCRÎ 3 Î $^\prime$ cells: Mysterious cells of the immune system. Immunologic Research, 1994, 13, 268-279.	1,3	22
89	Thymically-derived Foxp3+ regulatory T cells are the primary regulators of type 1 diabetes in the non-obese diabetic mouse model. PLoS ONE, 2019, 14, e0217728.	1.1	19
90	FOXP3, the Transcription Factor at the Heart of the Rebirth of Immune Tolerance. Journal of Immunology, 2017, 198, 979-980.	0.4	13

#	Article	IF	CITATIONS
91	Shifting the Evolving CAR T Cell Platform into Higher Gear. Cancer Cell, 2015, 28, 401-402.	7.7	7
92	Accelerating the development of innovative cellular therapy products for the treatment of cancer. Cytotherapy, 2020, 22, 239-246.	0.3	7
93	Cutting Edge: IL-6–Driven Immune Dysregulation Is Strictly Dependent on IL-6R α-Chain Expression. Journal of Immunology, 2020, 204, 747-751.	0.4	5
94	Anti-CD3 therapy enhances hematopoiesis and blocks graft-versus-host disease. International Journal of Cell Cloning, 1991, 9, 91-104.	1.6	0