Luciano Gattinoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/181767/publications.pdf

Version: 2024-02-01

418 papers

60,303 citations

104 h-index 983 237 g-index

430 all docs 430 docs citations

430 times ranked

23228 citing authors

#	Article	IF	CITATIONS
1	Lung Recruitment in Patients with the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2006, 354, 1775-1786.	13.9	4,002
2	Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA - Journal of the American Medical Association, 2016, 315, 788.	3.8	3,568
3	Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: A multiple-center epidemiological study*. Critical Care Medicine, 2005, 33, 315-322.	0.4	1,885
4	A Trial of Goal-Oriented Hemodynamic Therapy in Critically Ill Patients. New England Journal of Medicine, 1995, 333, 1025-1032.	13.9	1,502
5	COVID-19 pneumonia: different respiratory treatments for different phenotypes?. Intensive Care Medicine, 2020, 46, 1099-1102.	3.9	1,443
6	Anemia and Blood Transfusion in Critically III Patients. JAMA - Journal of the American Medical Association, 2002, 288, 1499.	3.8	1,428
7	Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Medicine, 2004, 30, 822-829.	3.9	1,188
8	Effect of Prone Positioning on the Survival of Patients with Acute Respiratory Failure. New England Journal of Medicine, 2001, 345, 568-573.	13.9	1,184
9	COVID-19 Does Not Lead to a "Typical―Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1299-1300.	2.5	1,138
10	The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Medicine, 2012, 38, 1573-1582.	3.9	1,112
11	An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1253-1263.	2.5	1,104
12	Acute Respiratory Distress Syndrome Caused by Pulmonary and Extrapulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 1998, 158, 3-11.	2.5	1,097
13	Albumin Replacement in Patients with Severe Sepsis or Septic Shock. New England Journal of Medicine, 2014, 370, 1412-1421.	13.9	947
14	Pressure-Volume Curve of Total Respiratory System in Acute Respiratory Failure: Computed Tomographic Scan Study. The American Review of Respiratory Disease, 1987, 136, 730-736.	2.9	846
15	Management of COVID-19 Respiratory Distress. JAMA - Journal of the American Medical Association, 2020, 323, 2329.	3.8	842
16	What Has Computed Tomography Taught Us about the Acute Respiratory Distress Syndrome?. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1701-1711.	2.5	706
17	Tidal Hyperinflation during Low Tidal Volume Ventilation in Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 160-166.	2.5	699
18	Vertical gradient of regional lung inflation in adult respiratory distress syndrome American Journal of Respiratory and Critical Care Medicine, 1994, 149, 8-13.	2.5	689

#	Article	IF	Citations
19	The concept of "baby lung― Intensive Care Medicine, 2005, 31, 776-784.	3.9	688
20	Lung Stress and Strain during Mechanical Ventilation for Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 346-355.	2.5	633
21	Volume/pressure curve of total respiratory system in paralysed patients: artefacts and correction factors. Intensive Care Medicine, 1987, 13, 19-25.	3.9	625
22	Relationships Between Lung Computed Tomographic Density, Gas Exchange, and PEEP in Acute Respiratory Failure. Anesthesiology, 1988, 69, 824-832.	1.3	596
23	Ventilator-related causes of lung injury: the mechanical power. Intensive Care Medicine, 2016, 42, 1567-1575.	3.9	586
24	Recruitment and Derecruitment during Acute Respiratory Failure. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 131-140.	2.5	585
25	The rule regulating pH changes during crystalloid infusion. Intensive Care Medicine, 2011, 37, 461-468.	3.9	576
26	Body Position Changes Redistribute Lung Computed-Tomographic Density in Patients with Acute Respiratory Failure. Anesthesiology, 1991, 74, 15-23.	1.3	570
27	Low-Frequency Positive-Pressure Ventilation With Extracorporeal CO2 Removal in Severe Acute Respiratory Failure. JAMA - Journal of the American Medical Association, 1986, 256, 881.	3.8	558
28	Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome American Journal of Respiratory and Critical Care Medicine, 1995, 151, 1807-1814.	2.5	545
29	Tidal Volume Lower than 6 ml/kg Enhances Lung Protection. Anesthesiology, 2009, 111, 826-835.	1.3	511
30	COVID-19 pneumonia: ARDS or not?. Critical Care, 2020, 24, 154.	2.5	504
31	Recruitment and Derecruitment During Acute Respiratory Failure. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 122-130.	2.5	501
32	The Effects of Body Mass on Lung Volumes, Respiratory Mechanics, and Gas Exchange During General Anesthesia. Anesthesia and Analgesia, 1998, 87, 654-660.	1.1	499
33	Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Medicine, 2010, 36, 585-599.	3.9	486
34	Prone Positioning in Patients With Moderate and Severe Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2009, 302, 1977.	3.8	459
35	Noninvasive Ventilation of Patients with Acute Respiratory Distress Syndrome. Insights from the LUNG SAFE Study. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 67-77.	2.5	456
36	Effects of the Prone Position on Respiratory Mechanics and Gas Exchange during Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 1998, 157, 387-393.	2.5	449

#	Article	IF	Citations
37	The Application of Esophageal Pressure Measurement in Patients with Respiratory Failure. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 520-531.	2.5	443
38	Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA - Journal of the American Medical Association, 1986, 256, 881-886.	3.8	432
39	Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA - Journal of the American Medical Association, 1993, 269, 2122-2127.	3 . 8	430
40	Acute respiratory distress syndrome. Lancet, The, 2021, 398, 622-637.	6.3	426
41	Position Paper for the Organization of Extracorporeal Membrane Oxygenation Programs for Acute Respiratory Failure in Adult Patients. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 488-496.	2.5	400
42	Positive End-expiratory Pressure Improves Respiratory Function in Obese but not in Normal Subjects during Anesthesia and ParalysisÂ. Anesthesiology, 1999, 91, 1221-1221.	1.3	382
43	Regional Effects and Mechanism of Positive End-Expiratory Pressure in Early Adult Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 1993, 269, 2122.	3.8	373
44	Equal increases in respiratory system elastance reflect similar lung damage in experimental ventilator-induced lung injury. Intensive Care Medicine, 2002, 28, 196-203.	3.9	370
45	The American–European Consensus Conference on ARDS, Part 2. American Journal of Respiratory and Critical Care Medicine, 1998, 157, 1332-1347.	2.5	365
46	Total Respiratory System, Lung, and Chest Wall Mechanics in Sedated-Paralyzed Postoperative Morbidly Obese Patients. Chest, 1996, 109, 144-151.	0.4	361
47	The Prone Position in ARDS Patients. Chest, 1988, 94, 103-107.	0.4	357
48	Sigh in Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 1999, 159, 872-880.	2.5	357
49	Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Medicine, 2016, 42, 1360-1373.	3.9	352
50	Prone Position in Acute Respiratory Distress Syndrome. Rationale, Indications, and Limits. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1286-1293.	2. 5	349
51	The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: preparation for severe respiratory emergency outbreaks. Intensive Care Medicine, 2011, 37, 1447-57.	3.9	321
52	Mechanical Power and Development of Ventilator-induced Lung Injury. Anesthesiology, 2016, 124, 1100-1108.	1.3	305
53	Lung Stress and Strain during Mechanical Ventilation. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1354-1362.	2.5	297
54	Lung Opening and Closing during Ventilation of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 578-586.	2.5	287

#	Article	IF	Citations
55	Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA - Journal of the American Medical Association, 1994, 271, 1772-1779.	3.8	282
56	Lung Inhomogeneity in Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 149-158.	2.5	277
57	Lung Structure and Function in Different Stages of Severe Adult Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 1994, 271, 1772.	3.8	274
58	Prone position in acute respiratory distress syndrome. European Respiratory Journal, 2002, 20, 1017-1028.	3.1	271
59	Adult respiratory distress syndrome profiles by computed tomography. Journal of Thoracic Imaging, 1986, 1, 25-30.	0.8	255
60	Physical and biological triggers of ventilator-induced lung injury and its prevention. European Respiratory Journal, 2003, 22, 15s-25s.	3.1	252
61	Decrease in Paco2 with prone position is predictive of improved outcome in acute respiratory distress syndrome*. Critical Care Medicine, 2003, 31, 2727-2733.	0.4	247
62	Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Medicine, 2016, 42, 1865-1876.	3.9	247
63	TREATMENT OF ACUTE RESPIRATORY FAILURE WITH LOW-FREQUENCY POSITIVE-PRESSURE VENTILATION AND EXTRACORPOREAL REMOVAL OF CO2. Lancet, The, 1980, 316, 292-294.	6.3	246
64	Prone position in ARDS patients: why, when, how and for whom. Intensive Care Medicine, 2020, 46, 2385-2396.	3.9	243
65	Lung Stress and Strain During Mechanical Ventilation. Critical Care Medicine, 2013, 41, 1046-1055.	0.4	236
66	Respiratory system mechanics in sedated, paralyzed, morbidly obese patients. Journal of Applied Physiology, 1997, 82, 811-818.	1.2	235
67	Pulmonary and extrapulmonary acute respiratory distress syndrome are different. European Respiratory Journal, 2003, 22, 48s-56s.	3.1	224
68	Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Medicine, 1986, 12, 137-42.	3.9	214
69	The "baby lung" became an adult. Intensive Care Medicine, 2016, 42, 663-673.	3.9	206
70	Adult Respiratory Distress Syndrome Due to Pulmonary and Extrapulmonary Causes: CT, Clinical, and Functional Correlations. Radiology, 1999, 213, 545-552.	3.6	205
71	Ventilator-induced lung injury: The anatomical and physiological framework. Critical Care Medicine, 2010, 38, S539-S548.	0.4	201
72	Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Cmaj, 2014, 186, E381-E390.	0.9	200

#	Article	IF	Citations
73	An alternative to breathing. Journal of Thoracic and Cardiovascular Surgery, 1978, 75, 261-266.	0.4	199
74	Predicting mortality risk in patients undergoing venovenous ECMO for ARDS due to influenza A (H1N1) pneumonia: the ECMOnet score. Intensive Care Medicine, 2013, 39, 275-281.	3.9	199
75	Control of Breathing Using an Extracorporeal Membrane Lung. Anesthesiology, 1977, 46, 138-141.	1.3	193
76	ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Medicine, 2012, 38, 395-403.	3.9	191
77	An Increase of Abdominal Pressure Increases Pulmonary Edema in Oleic Acid–induced Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 534-541.	2.5	185
78	Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Critical Care, 2004, 8, 350.	2.5	181
79	Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Medicine, 2017, 43, 1453-1463.	3.9	180
80	The future of mechanical ventilation: lessons from the present and the past. Critical Care, 2017, 21, 183.	2.5	176
81	Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial. Critical Care, 2014, 18, R6.	2.5	175
82	Driving pressure and mechanical power: new targets for VILI prevention. Annals of Translational Medicine, 2017, 5, 286-286.	0.7	170
83	Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study. Intensive Care Medicine, 2020, 46, 2187-2196.	3.9	169
84	Albumin administration in the acutely ill: what is new and where next?. Critical Care, 2014, 18, 231.	2.5	167
85	Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient meta-analysis. Minerva Anestesiologica, 2010, 76, 448-54.	0.6	165
86	Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA - Journal of the American Medical Association, 1986, 256, 881-6.	3.8	163
87	Clinical review: Extracorporeal membrane oxygenation. Critical Care, 2011, 15, 243.	2.5	160
88	Prone position delays the progression of ventilator-induced lung injury in rats: Does lung strain distribution play a role?*. Critical Care Medicine, 2005, 33, 361-367.	0.4	159
89	"Awake―extracorporeal membrane oxygenation (ECMO): pathophysiology, technical considerations, and clinical pioneering. Critical Care, 2016, 20, 150.	2.5	151
90	Bedside Selection of Positive End-Expiratory Pressure in Mild, Moderate, and Severe Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2014, 42, 252-264.	0.4	138

#	Article	IF	CITATIONS
91	Persisting high levels of plasma pentraxin 3 over the first days after severe sepsis and septic shock onset are associated with mortality. Intensive Care Medicine, 2010, 36, 621-629.	3.9	137
92	Low-Frequency Positive Pressure Ventilation with Extracorporeal Carbon Dioxide Removal (LFPPV-ECCO2R). Anesthesia and Analgesia, 1978, 57, 470???477.	1.1	136
93	Venovenous extracorporeal membrane oxygenation for acute respiratory failure. Intensive Care Medicine, 2016, 42, 712-724.	3.9	136
94	Static and Dynamic Contributors to Ventilator-induced Lung Injury in Clinical Practice. Pressure, Energy, and Power. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 767-774.	2.5	135
95	Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA). Annals of Intensive Care, 2020, 10, 64.	2.2	134
96	How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. Journal of Critical Care, 2016, 35, 75-83.	1.0	129
97	Mortality prediction in patients with severe septic shock: a pilot study using a target metabolomics approach. Scientific Reports, 2016, 6, 20391.	1.6	126
98	Clinical review: Respiratory monitoring in the ICU - a consensus of 16. Critical Care, 2012, 16, 219.	2.5	119
99	Effects of the Beach Chair Position, Positive End-expiratory Pressure, and Pneumoperitoneum on Respiratory Function in Morbidly Obese Patients during Anesthesia and Paralysis. Anesthesiology, 2007, 107, 725-732.	1.3	116
100	Circulating presepsin (soluble CD14 subtype) as a marker of host response in patients with severe sepsis or septic shock: data from the multicenter, randomized ALBIOS trial. Intensive Care Medicine, 2015, 41, 12-20.	3.9	114
101	Role of Strain Rate in the Pathogenesis of Ventilator-Induced Lung Edema*. Critical Care Medicine, 2016, 44, e838-e845.	0.4	112
102	Stress and strain within the lung. Current Opinion in Critical Care, 2012, 18, 42-47.	1.6	111
103	Lung Recruitment Assessed by Respiratory Mechanics and Computed Tomography in Patients with Acute Respiratory Distress Syndrome. What Is the Relationship?. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1254-1263.	2.5	111
104	Static and dynamic components of esophageal and central venous pressure during intra-abdominal hypertension*. Critical Care Medicine, 2007, 35, 1575-1581.	0.4	105
105	Organ Allocation Waiting Time During Extracorporeal Bridge to Lung Transplant Affects Outcomes. Chest, 2013, 144, 1018-1025.	0.4	105
106	Refining Ventilatory Treatment for Acute Lung Injury and Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2008, 299, 691.	3.8	104
107	Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Critical Care, 2008, 12, R150.	2.5	104
108	Imaging in acute respiratory distress syndrome. Intensive Care Medicine, 2016, 42, 686-698.	3.9	104

#	Article	IF	Citations
109	Lactate as a marker of energy failure in critically ill patients: hypothesis. Critical Care, 2005, 9, 588.	2.5	102
110	Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome*. Critical Care Medicine, 2008, 36, 669-675.	0.4	102
111	Prone Positioning in Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2019, 40, 094-100.	0.8	99
112	Personalized mechanical ventilation in acute respiratory distress syndrome. Critical Care, 2021, 25, 250.	2.5	97
113	Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Medicine, 2017, 43, 603-611.	3.9	96
114	Geo-economic variations in epidemiology, patterns of care, and outcomes in patients with acute respiratory distress syndrome: insights from the LUNG SAFE prospective cohort study. Lancet Respiratory Medicine,the, 2017, 5, 627-638.	5.2	93
115	Thromboelastography-based anticoagulation management during extracorporeal membrane oxygenation: a safety and feasibility pilot study. Annals of Intensive Care, 2018, 8, 7.	2.2	92
116	The Role of CT-scan Studies for the Diagnosis and Therapy of Acute Respiratory Distress Syndrome. Clinics in Chest Medicine, 2006, 27, 559-570.	0.8	90
117	Understanding Lactatemia in Human Sepsis. Potential Impact for Early Management. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 582-589.	2.5	90
118	Spontaneous Breathing during Extracorporeal Membrane Oxygenation in Acute Respiratory Failure. Anesthesiology, 2017, 126, 678-687.	1.3	87
119	Reclassifying Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1586-1595.	2.5	87
120	Management of mechanical ventilation during laparoscopic surgery. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2010, 24, 227-241.	1.7	86
121	Lung Inhomogeneities and Time Course of Ventilator-induced Mechanical Injuries. Anesthesiology, 2015, 123, 618-627.	1.3	86
122	Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA - Journal of the American Medical Association, 1994, 271, 1772-9.	3.8	86
123	THE CARBON DIOXIDE MEMBRANE LUNG (CDML). ASAIO Journal, 1977, 23, 17-21.	0.9	84
124	Positive end-expiratory pressure. Current Opinion in Critical Care, 2010, 16, 39-44.	1.6	84
125	Lung anatomy, energy load, and ventilator-induced lung injury. Intensive Care Medicine Experimental, 2015, 3, 34.	0.9	84
126	Respiratory support in patients with acute respiratory distress syndrome: an expert opinion. Critical Care, 2017, 21, 240.	2.5	84

#	Article	IF	Citations
127	COVID-19 pneumonia: pathophysiology and management. European Respiratory Review, 2021, 30, 210138.	3.0	84
128	Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure: impact and clinical fallout through the following 20Ayears. Intensive Care Medicine, 2013, 39, 1909-1915.	3.9	80
129	Positive End-expiratory Pressure and Mechanical Power. Anesthesiology, 2019, 130, 119-130.	1.3	80
130	The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Medicine, 2014, 40, 1670-1678.	3.9	79
131	Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA - Journal of the American Medical Association, 1993, 269, 2122-7.	3.8	79
132	Effects of carbon dioxide insufflation for laparoscopic cholecystectomy on the respiratory system. Anaesthesia, 1996, 51, 744-749.	1.8	77
133	Inflammatory pulmonary edema and positive end-expiratory pressure. Journal of Thoracic Imaging, 1988, 3, 59-64.	0.8	75
134	Sequential N-Terminal Pro-B-Type Natriuretic Peptide and High-Sensitivity Cardiac Troponin Measurements During Albumin Replacement in Patients With Severe Sepsis or Septic Shock*. Critical Care Medicine, 2016, 44, 707-716.	0.4	75
135	Extracorporeal organ support (ECOS) in critical illness and acute kidney injury: from native to artificial organ crosstalk. Intensive Care Medicine, 2018, 44, 1447-1459.	3.9	75
136	CONTROL OF INTERMITTENT POSITIVE PRESSURE BREATHING (IPPB) BY EXTRACORPOREAL REMOVAL OF CARBON DIOXIDE. British Journal of Anaesthesia, 1978, 50, 753-758.	1.5	74
137	Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients. Critical Care Medicine, 2003, 31, S300-S304.	0.4	74
138	Oxygen consumption is depressed in patients with lactic acidosis due to biguanide intoxication. Critical Care, 2010, 14, R22.	2.5	73
139	Regional physiology of ARDS. Critical Care, 2017, 21, 312.	2.5	73
140	Positive end-expiratory pressure: how to set it at the individual level. Annals of Translational Medicine, 2017, 5, 288-288.	0.7	73
141	Pentraxin 3 in patients with severe sepsis or shock: the ALBIOS trial. European Journal of Clinical Investigation, 2017, 47, 73-83.	1.7	71
142	Ex vivo lung perfusion to improve donor lung function and increase the number of organs available for transplantation. Transplant International, 2014, 27, 553-561.	0.8	67
143	Successful Transplantation of Lungs From an Uncontrolled Donor After Circulatory Death Preserved In Situ by Alveolar Recruitment Maneuvers and Assessed by Ex Vivo Lung Perfusion. American Journal of Transplantation, 2016, 16, 1312-1318.	2.6	65
144	Platelet Drop and Fibrinolytic Shutdown in Patients With Sepsis. Critical Care Medicine, 2018, 46, e221-e228.	0.4	65

#	Article	IF	CITATIONS
145	Mechanical power at a glance: a simple surrogate for volume-controlled ventilation. Intensive Care Medicine Experimental, 2019, 7, 61.	0.9	65
146	The clinical use of albumin: the point of view of a specialist in intensive care. Blood Transfusion, 2009, 7, 259-67.	0.3	65
147	Pulmonary microthrombosis in severe adult respiratory distress syndrome. Critical Care Medicine, 1988, 16, 111-113.	0.4	63
148	Assessment of Fibrinolysis in Sepsis Patients with Urokinase Modified Thromboelastography. PLoS ONE, 2015, 10, e0136463.	1.1	62
149	Relationship between gas exchange response to prone position and lung recruitability during acute respiratory failure. Intensive Care Medicine, 2009, 35, 1011-1017.	3.9	61
150	Limits of normality of quantitative thoracic CT analysis. Critical Care, 2013, 17, R93.	2.5	61
151	Effects of thoraco-pelvic supports during prone position in patients with acute lung injury/acute respiratory distress syndrome: a physiological study. Critical Care, 2006, 10, R87.	2.5	60
152	Tight glycemic control may favor fibrinolysis in patients with sepsis*. Critical Care Medicine, 2009, 37, 424-431.	0.4	60
153	Fluid administration and monitoring in ARDS: which management?. Intensive Care Medicine, 2020, 46, 2252-2264.	3.9	60
154	Lung Recruitability Is Better Estimated According to the Berlin Definition of Acute Respiratory Distress Syndrome at Standard 5 cm H2O Rather Than Higher Positive End-Expiratory Pressure. Critical Care Medicine, 2015, 43, 781-790.	0.4	59
155	Circulating Biologically Active Adrenomedullin (bio-ADM) Predicts Hemodynamic Support Requirement and Mortality During Sepsis. Chest, 2017, 152, 312-320.	0.4	59
156	How to ventilate obese patients in the ICU. Intensive Care Medicine, 2020, 46, 2423-2435.	3.9	59
157	Extracorporeal carbon dioxide removal (ECCO2R): a new form of respiratory assistance. International Journal of Artificial Organs, 1979, 2, 183-5.	0.7	59
158	Compressive Forces and Computed Tomography–derived Positive End-expiratory Pressure in Acute Respiratory Distress Syndrome. Anesthesiology, 2014, 121, 572-581.	1.3	58
159	Extracorporeal Gas Exchange and Spontaneous Breathing for the Treatment of Acute Respiratory Distress Syndrome. Critical Care Medicine, 2014, 42, e211-e220.	0.4	57
160	Metformin overdose causes platelet mitochondrial dysfunction in humans. Critical Care, 2012, 16, R180.	2.5	56
161	Propagation prevention: A complementary mechanism for "lung protective―ventilation in acute respiratory distress syndrome*. Critical Care Medicine, 2008, 36, 3252-3258.	0.4	55
162	Selecting the â€~right' positive end-expiratory pressure level. Current Opinion in Critical Care, 2015, 21, 50-57.	1.6	55

#	Article	IF	Citations
163	Time to generate ventilator-induced lung injury among mammals with healthy lungs: a unifying hypothesis. Intensive Care Medicine, 2011, 37, 1913-1920.	3.9	54
164	Use of ECMO in ARDS: does the EOLIA trial really help?. Critical Care, 2018, 22, 171.	2.5	54
165	An alternative to breathing. Journal of Thoracic and Cardiovascular Surgery, 1978, 75, 261-6.	0.4	54
166	Pulmonary and Extrapulmonary Forms of Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2001, 22, 259-268.	0.8	53
167	Simulation-Based Training of Extracorporeal Membrane Oxygenation During H1N1 Influenza Pandemic. Simulation in Healthcare, 2012, 7, 32-34.	0.7	53
168	Time to reach a new steady state after changes of positive end expiratory pressure. Intensive Care Medicine, 2013, 39, 1377-1385.	3.9	53
169	Time Course of Evolving Ventilator-Induced Lung Injury: The "Shrinking Baby Lung― Critical Care Medicine, 2020, 48, 1203-1209.	0.4	53
170	Metformin overdose, but not lactic acidosis per se, inhibits oxygen consumption in pigs. Critical Care, 2012, 16, R75.	2.5	52
171	The impact of ventilation–perfusion inequality in COVID-19: a computational model. Journal of Applied Physiology, 2021, 130, 865-876.	1.2	52
172	A New Look at Therapy of the Adult Respiratory Distress Syndrome. International Anesthesiology Clinics, 1983, 21, 97-118.	0.3	51
173	Role of total lung stress on the progression of early COVID-19 pneumonia. Intensive Care Medicine, 2021, 47, 1130-1139.	3.9	51
174	Albumin Replacement in Severe Sepsis or Septic Shock. New England Journal of Medicine, 2014, 371, 83-84.	13.9	50
175	Towards ultraprotective mechanical ventilation. Current Opinion in Anaesthesiology, 2012, 25, 141-147.	0.9	49
176	Artificial lung as an alternative to mechanical ventilation in COPD exacerbation. European Respiratory Journal, 2012, 39, 212-215.	3.1	49
177	Prevalence and outcome of silent hypoxemia in COVID-19. Minerva Anestesiologica, 2021, 87, 325-333.	0.6	49
178	Lung inhomogeneities, inflation and [¹⁸ F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome. European Respiratory Journal, 2016, 47, 233-242.	3.1	48
179	Clinical application of low frequency positive pressure ventilation with extracorporeal CO2 removal (LFPPV-ECCO2R) in treatment of adult respiratory distress syndrome (ARDS). International Journal of Artificial Organs, 1979, 2, 282-3.	0.7	48
180	Radiological Imaging in Acute Lung Injury and Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2006, 27, 404-415.	0.8	47

#	Article	IF	Citations
181	Mechanical Ventilation in Adults with Acute Respiratory Distress Syndrome. Summary of the Experimental Evidence for the Clinical Practice Guideline. Annals of the American Thoracic Society, 2017, 14, S261-S270.	1.5	47
182	Pathophysiology of coronavirus-19 disease acute lung injury. Current Opinion in Critical Care, 2022, 28, 9-16.	1.6	46
183	Case of Exogenous Lipoid Pneumonia: Steroid Therapy and Lung Lavage with an Emulsifier. Anesthesiology, 2006, 104, 197-198.	1.3	45
184	Which is the most important strain in the pathogenesis of ventilator-induced lung injury. Current Opinion in Critical Care, 2014, 20, 33-38.	1.6	45
185	Intraoperative hypotension is not associated with postoperative cognitive dysfunction in elderly patients undergoing general anesthesia for surgery: results of a randomized controlled pilot trial. Journal of Clinical Anesthesia, 2019, 52, 111-118.	0.7	45
186	Positive end-expiratory pressure delays the progression of lung injury during ventilator strategies involving high airway pressure and lung overdistention. Critical Care Medicine, 2003, 31, 1993-1998.	0.4	43
187	How I wean patients from veno-venous extra-corporeal membrane oxygenation. Critical Care, 2019, 23, 316.	2.5	43
188	Pleural Effusion in Patients With Acute Lung Injury. Critical Care Medicine, 2013, 41, 935-944.	0.4	42
189	Understanding blood gas analysis. Intensive Care Medicine, 2018, 44, 91-93.	3.9	42
190	Changes in shunt, ventilation/perfusion mismatch, and lung aeration with PEEP in patients with ARDS: a prospective single-arm interventional study. Critical Care, 2020, 24, 111.	2.5	42
191	In vivo conditioning of acid–base equilibrium by crystalloid solutions: an experimental study on pigs. Intensive Care Medicine, 2012, 38, 686-693.	3.9	41
192	Platelet mitochondrial dysfunction in critically ill patients: comparison between sepsis and cardiogenic shock. Critical Care, 2015, 19, 39.	2.5	41
193	The intensive care medicine research agenda for airways, invasive and noninvasive mechanical ventilation. Intensive Care Medicine, 2017, 43, 1352-1365.	3.9	41
194	The Respiratory Drive: An Overlooked Tile of COVID-19 Pathophysiology. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1079-1080.	2.5	40
195	Percutaneous Extracorporeal CO2 Removal in a Patient with Bullous Emphysema with Recurrent Bilateral Pneumothoraces and Respiratory Failure. Anesthesiology, 1990, 72, 571-572.	1.3	39
196	Strong ion difference in urine: new perspectives in acid-base assessment. Critical Care, 2006, 10, 137.	2.5	39
197	Volutrauma and atelectrauma: which is worse?. Critical Care, 2018, 22, 264.	2.5	39
198	Identification of pathophysiological patterns for triage and respiratory support in COVID-19. Lancet Respiratory Medicine, the, 2020, 8, 752-754.	5.2	39

#	Article	IF	CITATIONS
199	The baby lung and the COVID-19 era. Intensive Care Medicine, 2020, 46, 1438-1440.	3.9	39
200	Does Iso-mechanical Power Lead to Iso-lung Damage?. Anesthesiology, 2020, 132, 1126-1137.	1.3	39
201	Outcome of acute hypoxaemic respiratory failure: insights from the LUNG SAFE Study. European Respiratory Journal, 2021, 57, 2003317.	3.1	39
202	Chest wall mechanics during pressure support ventilation. Critical Care, 2006, 10, R54.	2.5	38
203	The Consumption of Glucose During Ex Vivo Lung Perfusion Correlates With Lung Edema. Transplantation Proceedings, 2011, 43, 993-996.	0.3	38
204	Designing phase 3 sepsis trials: application of learned experiences from critical care trials in acute heart failure. Journal of Intensive Care, 2016, 4, 24.	1.3	38
205	Targeting transpulmonary pressure to prevent ventilator-induced lung injury. Expert Review of Respiratory Medicine, 2019, 13, 737-746.	1.0	38
206	Mechanisms of oxygenation responses to proning and recruitment in COVID-19 pneumonia. Intensive Care Medicine, 2022, 48, 56-66.	3.9	38
207	Visual anatomical lung CT scan assessment of lung recruitability. Intensive Care Medicine, 2013, 39, 66-73.	3.9	37
208	Extracorporeal Membrane Oxygenation for Respiratory Failure. Anesthesiology, 2020, 132, 1257-1276.	1.3	37
209	Albumin in critically ill patients. Current Opinion in Critical Care, 2015, 21, 302-308.	1.6	36
210	Randomized, multicenter trial of lateral Trendelenburg versus semirecumbent body position for the prevention of ventilator-associated pneumonia. Intensive Care Medicine, 2017, 43, 1572-1584.	3.9	36
211	Extracorporeal CO2 Removal: The Minimally Invasive Approach, Theory, and Practice*. Critical Care Medicine, 2019, 47, 33-40.	0.4	36
212	Endothelial damage in septic shock patients as evidenced by circulating syndecan-1, sphingosine-1-phosphate and soluble VE-cadherin: a substudy of ALBIOS. Critical Care, 2021, 25, 113.	2.5	36
213	Spontaneous breathing, transpulmonary pressure and mathematical trickery. Annals of Intensive Care, 2020, 10, 88.	2.2	36
214	A validation study of a new nasogastric polyfunctional catheter. Intensive Care Medicine, 2011, 37, 791-795.	3.9	35
215	Prevalence of "Flat-Line―Thromboelastography During Extracorporeal Membrane Oxygenation for Respiratory Failure in Adults. ASAIO Journal, 2016, 62, 302-309.	0.9	35
216	Ultra-protective ventilation and hypoxemia. Critical Care, 2016, 20, 130.	2.5	35

#	Article	IF	Citations
217	Hemostasis changes during veno-venous extracorporeal membrane oxygenation for respiratory support in adults. Minerva Anestesiologica, 2016, 82, 170-9.	0.6	35
218	The German ECMO inflation: when things other than health and care begin to rule medicine. Intensive Care Medicine, 2016, 42, 1264-1266.	3.9	34
219	Effect of body mass index in acute respiratory distress syndrome. British Journal of Anaesthesia, 2016, 116, 113-121.	1.5	34
220	Physiopathology and Management of Coagulation during Long-term Extracorporeal Respiratory Assistance. International Journal of Artificial Organs, 1990, 13, 280-287.	0.7	33
221	Prone Positioning. Anesthesiology, 2010, 113, 1262-1264.	1.3	33
222	\hat{l}^2 -Adrenergic agonist infusion during extracorporeal lung perfusion: Effects on glucose concentration in the perfusion fluid and on lung function. Journal of Heart and Lung Transplantation, 2012, 31, 524-530.	0.3	33
223	Electrolyte shifts across the artificial lung in patients on extracorporeal membrane oxygenation: Interdependence between partial pressure of carbon dioxide and strong ion difference. Journal of Critical Care, 2015, 30, 2-6.	1.0	33
224	Quality of Life and Lung Function in Survivors of Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome. Anesthesiology, 2019, 130, 572-580.	1.3	33
225	Effects of intravenous solutions on acid-base equilibrium: from crystalloids to colloids and blood components. Anaesthesiology Intensive Therapy, 2014, 46, 350-360.	0.4	32
226	How ARDS should be treated. Critical Care, 2016, 20, 86.	2.5	31
227	Circulating Proenkephalin, Acute Kidney Injury, and Its Improvement in Patients with Severe Sepsis or Shock. Clinical Chemistry, 2018, 64, 1361-1369.	1.5	31
228	Determinants and Prevention of Ventilator-Induced Lung Injury. Critical Care Clinics, 2018, 34, 343-356.	1.0	31
229	Extracorporeal gas exchange: when to start and how to end?. Critical Care, 2019, 23, 203.	2.5	31
230	Ventilatory Impact of Partial Extracorporeal CO2 Removal (PECOR) in ARF Patients. ASAIO Transactions, 1986, 32, 508-510.	0.2	30
231	How to monitor lung recruitment in patients with acute lung injury. Current Opinion in Critical Care, 2007, 13, 338-343.	1.6	30
232	Long-term outcomes in survivors of acute respiratory distress syndrome ventilated in supine or prone position. Intensive Care Medicine, 2012, 38, 221-229.	3.9	30
233	Low D-dimer levels in sepsis: Good or bad?. Thrombosis Research, 2019, 174, 13-15.	0.8	30
234	Acute lung injury/acute respiratory distress syndrome pathophysiology: what we have learned from computed tomography scanning. Current Opinion in Critical Care, 2008, 14, 64-69.	1.6	29

#	Article	IF	CITATIONS
235	Extracorporeal Lung Perfusion and Ventilation to Improve Donor Lung Function and Increase the Number of Organs Available for Transplantation. Transplantation Proceedings, 2012, 44, 1826-1829.	0.3	29
236	Respiratory Mechanics, Lung Recruitability, and Gas Exchange in Pulmonary and Extrapulmonary Acute Respiratory Distress Syndrome. Critical Care Medicine, 2019, 47, 792-799.	0.4	29
237	Adult Respiratory Distress Syndrome (Ards): Why Did Ecmo Fail?. International Journal of Artificial Organs, 1981, 4, 58-59.	0.7	28
238	Fluids in ARDS. Current Opinion in Critical Care, 2014, 20, 373-377.	1.6	28
239	Low-dose chest computed tomography for quantitative and visual anatomical analysis in patients with acute respiratory distress syndrome. Intensive Care Medicine, 2014, 40, 691-699.	3.9	28
240	WHO Needs High FIO2?. Turkish Journal of Anaesthesiology and Reanimation, 2017, 45, 181-192.	0.8	28
241	An Innovative Approach for The Integration of Proteomics and Metabolomics Data In Severe Septic Shock Patients Stratified for Mortality. Scientific Reports, 2018, 8, 6681.	1.6	28
242	Positive end-expiratory pressure applied to the dependent lung during one-lung ventilation improves oxygenation and respiratory mechanics in patients with high FEV1. European Journal of Anaesthesiology, 2004, 21, 938-943.	0.7	27
243	Dilutional acidosis: where do the protons come from?. Intensive Care Medicine, 2009, 35, 2033-2043.	3.9	27
244	How best to set the ventilator on extracorporeal membrane lung oxygenation. Current Opinion in Critical Care, 2017, 23, 66-72.	1.6	27
245	Breathing and Ventilation during Extracorporeal Membrane Oxygenation: How to Find the Balance between Rest and Load. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 954-956.	2.5	27
246	Learning from mistakes during the pandemic: the Lombardy lesson. Intensive Care Medicine, 2020, 46, 1622-1623.	3.9	27
247	Isn't it time to abandon ARDS? The COVID-19 lesson. Critical Care, 2021, 25, 326.	2.5	27
248	Counterpoint: Is Low Tidal Volume Mechanical Ventilation Preferred for All Patients on Ventilation? No. Chest, 2011, 140, 11-13.	0.4	26
249	Is the mechanical power the final word on ventilator-induced lung injury?—we are not sure. Annals of Translational Medicine, 2018, 6, 395-395.	0.7	25
250	Benefits and risks of the P/F approach. Intensive Care Medicine, 2018, 44, 2245-2247.	3.9	25
251	Stress index in presence of pleural effusion: does it have any meaning?. Intensive Care Medicine, 2011, 37, 561-563.	3.9	24
252	Role of albumin, starches and gelatins versus crystalloids in volume resuscitation of critically ill patients. Current Opinion in Critical Care, 2016, 22, 428-436.	1.6	24

#	Article	IF	Citations
253	Energetics and the Root Mechanical Cause for Ventilator-induced Lung Injury. Anesthesiology, 2018, 128, 1062-1064.	1.3	24
254	Pulmonary computed tomography and adult respiratory distress syndrome. Swiss Medical Weekly, 2005, 135, 169-74.	0.8	24
255	Supporting hemodynamics: what should we target? What treatments should we use?. Critical Care, 2013, 17, S4.	2.5	23
256	Prone position ameliorates lung elastance and increases functional residual capacity independently from lung recruitment. Intensive Care Medicine Experimental, 2015, 3, 55.	0.9	23
257	Prognostic Value of Secretoneurin in Patients With Severe Sepsis and Septic Shock. Critical Care Medicine, 2018, 46, e404-e410.	0.4	23
258	Simple estimate of the true right to left shunt (Qs/Qt) at maintenance F1O2 by Sulphur Hexafluoride retention. Intensive Care Medicine, 1982, 8, 283-286.	3.9	22
259	Ventilation in the prone position: For some but not for all?. Cmaj, 2008, 178, 1174-1176.	0.9	22
260	Prevalence of endotoxemia after surgery and its association with ICU length of stay. Critical Care, 2009, 13, R102.	2.5	22
261	Mitochondrial Changes in Platelets Are Not Related to Those in Skeletal Muscle during Human Septic Shock. PLoS ONE, 2014, 9, e96205.	1.1	22
262	Volutrauma, Atelectrauma, and Mechanical Power. Critical Care Medicine, 2017, 45, e327-e328.	0.4	22
263	Intensive care medicine in 2050: ventilator-induced lung injury. Intensive Care Medicine, 2018, 44, 76-78.	3.9	22
264	Pathophysiology of COVID-19-associated acute respiratory distress syndrome. Lancet Respiratory Medicine, the, 2021, 9, e1.	5.2	22
265	Ventilation in the prone position. Lancet, The, 1997, 350, 815.	6.3	21
266	Balancing volume resuscitation and ascites management in cirrhosis. Current Opinion in Anaesthesiology, 2010, 23, 151-158.	0.9	21
267	Comparison between clinical indicators of transmembrane oxygenator thrombosis and multidetector computed tomographic analysis. Journal of Critical Care, 2015, 30, 441.e7-441.e13.	1.0	21
268	Acquiring knowledge in intensive care: merits and pitfalls of randomized controlled trials. Intensive Care Medicine, 2015, 41, 1460-1464.	3.9	21
269	Nutritional Support to Long‶erm Anesthetized and Curarized Patients Under Extracorporeal Respiratory Assist for Terminal Pulmonary Failure. Journal of Parenteral and Enteral Nutrition, 1983, 7, 50-54.	1.3	20
270	Real-time urinary electrolyte monitoring after furosemide administration in surgical ICU patients with normal renal function. Annals of Intensive Care, 2016, 6, 72.	2.2	20

#	Article	IF	Citations
271	COVID-19 phenotypes: leading or misleading?. European Respiratory Journal, 2020, 56, 2002195.	3.1	20
272	COVID-19 and ARDS: the baby lung size matters. Intensive Care Medicine, 2021, 47, 133-134.	3.9	20
273	Low-dose CT for quantitative analysis in acute respiratory distress syndrome. Critical Care, 2013, 17, R183.	2.5	19
274	"Less is More―in mechanical ventilation. Intensive Care Medicine, 2020, 46, 780-782.	3.9	19
275	Venous admixture (Qva/Q) and true shunt (Qs/Qt) in ARF patients: Effects of PEEP at constant FIO2. Intensive Care Medicine, 1983 , 9 , $307-311$.	3.9	18
276	Quantitative CT in ARDS: towards a clinical tool?. Intensive Care Medicine, 2010, 36, 1803-1804.	3.9	18
277	Pressure-guided positioning of bicaval dual-lumen catheters for venovenous extracorporeal gas exchange. Intensive Care Medicine, 2013, 39, 151-154.	3.9	18
278	What's new in respiratory physiology? The expanding chest wall revisited!. Intensive Care Medicine, 2015, 41, 1110-1113.	3.9	18
279	Atelectrauma or volutrauma: the dilemma. Journal of Thoracic Disease, 2018, 10, 1258-1264.	0.6	18
280	Persistence of Central Venous Oxygen Desaturation During Early Sepsis Is Associated With Higher Mortality. Chest, 2018, 154, 1291-1300.	0.4	18
281	Hemodynamic, mechanical and renal effects during "apneic oxygenation" with extracorporeal carbon dioxide removal, at different levels of intrapulmonary pressure in lambs. International Journal of Artificial Organs, 1979, 2, 249-53.	0.7	18
282	Kidney instant monitoring (K.IN.G): a new analyzer to monitor kidney function. Minerva Anestesiologica, 2010, 76, 316-24.	0.6	18
283	Assessing gas exchange in acute lung injury/acute respiratory distress syndrome: diagnostic techniques and prognostic relevance. Current Opinion in Critical Care, 2011, 17, 18-23.	1.6	17
284	Use of the Oto Lung Donor Score to Analyze the 2010 Donor Pool of the Nord Italia Transplant Program. Transplantation Proceedings, 2012, 44, 1830-1834.	0.3	17
285	Septic shock-3 vs 2: an analysis of the ALBIOS study. Critical Care, 2018, 22, 237.	2.5	17
286	Mobilizing Carbon Dioxide Stores. An Experimental Study. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 318-327.	2.5	17
287	Time to Rethink the Approach to Treating Acute Respiratory Distress Syndrome. JAMA - Journal of the American Medical Association, 2018, 319, 664.	3.8	16
288	Extracorporeal Chloride Removal by Electrodialysis. A Novel Approach to Correct Acidemia. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 799-813.	2.5	16

#	Article	IF	CITATIONS
289	Recruiting the Acutely Injured Lung: How and Why?. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 130-132.	2.5	16
290	Intra-cycle power: is the flow profile a neglected component of lung protection?. Intensive Care Medicine, 2021, 47, 609-611.	3.9	16
291	Using Artificial Intelligence for Automatic Segmentation of CT Lung Images in Acute Respiratory Distress Syndrome. Frontiers in Physiology, 2021, 12, 676118.	1.3	16
292	D-dimer corrected for thrombin and plasmin generation is a strong predictor of mortality in patients with sepsis. Blood Transfusion, 2020, 18, 304-311.	0.3	16
293	Validation of computed tomography for measuring lung weight. Intensive Care Medicine Experimental, 2014, 2, 31.	0.9	15
294	F <scp>ifty</scp> Y <scp>ears</scp> <scp>of</scp> R <scp>esearch</scp> <scp>in</scp> ARDS Why Is Acute Respiratory Distress Syndrome So Important for Critical Care?. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1051-1052.	2.5	15
295	Randomized controlled multicentre study of albumin replacement therapy in septic shock (ARISS): protocol for a randomized controlled trial. Trials, 2020, 21, 1002.	0.7	15
296	End-tidal to arterial PCO2 ratio: a bedside meter of the overall gas exchanger performance. Intensive Care Medicine Experimental, 2021, 9, 21.	0.9	15
297	Low noncarbonic buffer power amplifies acute respiratory acid-base disorders in patients with sepsis: an in vitro study. Journal of Applied Physiology, 2021, 131, 464-473.	1.2	15
298	Friday night ventilation: a safety starting tool kit for mechanically ventilated patients. Minerva Anestesiologica, 2014, 80, 1046-57.	0.6	15
299	Mechanical power thresholds during mechanical ventilation: An experimental study. Physiological Reports, 2022, 10, e15225.	0.7	15
300	The physiological underpinnings of life-saving respiratory support. Intensive Care Medicine, 2022, 48, 1274-1286.	3.9	15
301	Sodium Bicarbonate Treatment during Transient or Sustained Lactic Acidemia in Normoxic and Normotensive Rats. PLoS ONE, 2012, 7, e46035.	1.1	14
302	High positive end-expiratory pressure: only a dam against oedema formation?. Critical Care, 2013, 17, R131.	2.5	14
303	Assessment of oxygenation response to prone position ventilation in ARDS by lung ultrasonography. Intensive Care Medicine, 2016, 42, 1601-1603.	3.9	14
304	Intensive care medicine in 2050: the future of ICU treatments. Intensive Care Medicine, 2017, 43, 1401-1402.	3.9	14
305	Positive end-expiratory pressure, prone positioning, and activated protein C: a critical review of meta-analyses. Minerva Anestesiologica, 2010, 76, 929-36.	0.6	14
306	Prone positioning and neuromuscular blocking agents are part of standard care in severe ARDS patients: we are not sure. Intensive Care Medicine, 2015, 41, 2201-2203.	3.9	13

#	Article	IF	CITATIONS
307	Body Position Alters Mechanical Power and Respiratory Mechanics During Thoracic Surgery. Anesthesia and Analgesia, 2020, 130, 391-401.	1.1	13
308	Gas exchange calculation may estimate changes in pulmonary blood flow during veno-arterial extracorporeal membrane oxygenation in a porcine model. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1211-L1221.	1.3	13
309	In search of the Holy Grail: identifying the best PEEP in ventilated patients. Intensive Care Medicine, 2022, 48, 728-731.	3.9	13
310	A few of our favorite unconfirmed ideas. Critical Care, 2015, 19, S1.	2.5	12
311	Looking beyond macroventilatory parameters and rethinking ventilator-induced lung injury. Journal of Applied Physiology, 2018, 124, 1214-1218.	1.2	12
312	Death in hospital following ICU discharge: insights from the LUNG SAFE study. Critical Care, 2021, 25, 144.	2.5	12
313	Intracycle power and ventilation mode as potential contributors to ventilator-induced lung injury. Intensive Care Medicine Experimental, 2021, 9, 55.	0.9	12
314	Prone Position and COVID-19: Mechanisms and Effects*. Critical Care Medicine, 2022, 50, 873-875.	0.4	12
315	Is mechanical ventilation a cure for ARDS?. Intensive Care Medicine, 2016, 42, 916-917.	3.9	11
316	COVID-19: scientific reasoning, pragmatism and emotional bias. Annals of Intensive Care, 2020, 10, 134.	2.2	11
317	Respiratory acidosis: is the correction with bicarbonate worth?. Minerva Anestesiologica, 2006, 72, 551-7.	0.6	11
318	End-Tidal to Arterial PCO2 Ratio as Guide to Weaning from Veno-Venous Extra-Corporeal Membrane Oxygenation. American Journal of Respiratory and Critical Care Medicine, 0, , .	2.5	11
319	Positive end-expiratory pressure applied to the dependent lung during one-lung ventilation improves oxygenation and respiratory mechanics in patients with high FEV1. European Journal of Anaesthesiology, 2004, 21, 938-943.	0.7	10
320	Sepsis: needs for defining severity. Intensive Care Medicine, 2015, 41, 551-552.	3.9	10
321	Ventilation-induced lung injury exists in spontaneously breathing patients with acute respiratory failure: We are not sure. Intensive Care Medicine, 2017, 43, 256-258.	3.9	10
322	Does high PEEP prevent alveolar cycling?. Medizinische Klinik - Intensivmedizin Und Notfallmedizin, 2018, 113, 7-12.	0.4	10
323	Estimating the Damaging Power of High-Stress Ventilation. Respiratory Care, 2020, 65, 1046-1052.	0.8	10
324	Reply by Gattinoni et al. to Hedenstierna et al., to Maley et al., to Fowler et al., to Bhatia and Mohammed, to Bos, to Koumbourlis and Motoyama, and to Haouzi et al American Journal of Respiratory and Critical Care Medicine, 2020, 202, 628-630.	2.5	10

#	Article	IF	Citations
325	Lung Ultrasound and Electrical Impedance Tomography During Ventilator-Induced Lung Injury*. Critical Care Medicine, 2022, 50, e630-e637.	0.4	10
326	Time-Course of Physiologic Variables During Extracorporeal Membrane Oxygenation and Outcome of Severe Acute Respiratory Distress Syndrome. ASAIO Journal, 2020, 66, 663-670.	0.9	9
327	Determinants of the esophageal-pleural pressure relationship in humans. Journal of Applied Physiology, 2020, 128, 78-86.	1.2	9
328	Effect of extracorporeal CO2 removal on respiratory rate in spontaneously breathing patients with chronic obstructive pulmonary disease exacerbation. Critical Care, 2013, 17, .	2.5	8
329	Proposed benefits of albumin from the ALBIOS trial: a dose of insane belief. Critical Care, 2014, 18, 510.	2.5	8
330	A standardized model of brain death, donor treatment, and lung transplantation for studies on organ preservation and reconditioning. Intensive Care Medicine Experimental, 2014, 2, 12.	0.9	8
331	Skeletal muscle lactate overproduction during metformin intoxication: An animal study with reverse microdialysis. Toxicology Letters, 2016, 255, 43-46.	0.4	8
332	Protecting the Ventilated Lung: Vascular Surge and Deflation Energetics. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1112-1114.	2.5	8
333	Role of Fluid and Sodium Retention in Experimental Ventilator-Induced Lung Injury. Frontiers in Physiology, 2021, 12, 743153.	1.3	8
334	Monitoring lung impedance changes during long-term ventilator-induced lung injury ventilation using electrical impedance tomography. Physiological Measurement, 2020, 41, 095011.	1.2	8
335	Anemia in the Intensive Care Unit: How Big Is the Problem?. Transfusion Alternatives in Transfusion Medicine, 2002, 4, 118-120.	0.2	7
336	Transpulmonary Pressure Meaning: Babel or Conceptual Evolution?. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1404-1405.	2.5	7
337	Extracorporeal Gas Exchange. Critical Care Clinics, 2018, 34, 413-422.	1.0	7
338	Albumin and furosemide in acute lung injury: A little step forward? *. Critical Care Medicine, 2002, 30, 2376-2377.	0.4	7
339	Paradoxical response to chest wall loading predicts a favorable mechanical response to reduction in tidal volume or PEEP. Critical Care, 2022, 26, .	2.5	7
340	Our favorite unproven ideas for future critical care. Critical Care, 2013, 17, S9.	2.5	6
341	Complexity and unanswered questions in the pathophysiology of COVID-19 ARDS. Intensive Care Medicine, 2021, 47, 495-496.	3.9	6
342	Lung recruitability in ARDS H1N1 patients. Intensive Care Medicine, 2010, 36, 1791-1792.	3.9	5

#	Article	IF	Citations
343	Quantification of stress raisers in ARDS. Critical Care, 2013, 17, .	2.5	5
344	Monitoring anticoagulation during extracorporeal membrane oxygenation in patients with acute respiratory failure. Critical Care, 2013, 17 , .	2.5	5
345	Determinants of energy dissipation in the respiratory system during mechanical ventilation. Critical Care, 2015, 19, .	2.5	5
346	Physiology versus evidence-based guidance for critical care practice. Critical Care, 2015, 19, S7.	2.5	5
347	Improved survival in critically ill patients: are large RCTs more useful than personalized medicine? We are not sure. Intensive Care Medicine, 2016, 42, 1781-1783.	3.9	5
348	Effects of regional perfusion block in healthy and injured lungs. Intensive Care Medicine Experimental, 2017, 5, 46.	0.9	5
349	Pentraxin-3, Troponin T, N-Terminal Pro-B-Type Natriuretic Peptide in Septic Patients. Shock, 2020, 54, 675-680.	1.0	5
350	Understanding base excess (BE): merits and pitfalls. Intensive Care Medicine, 2022, 48, 1080-1083.	3.9	5
351	Do we need randomized clinical trials in extracorporeal respiratory support? No. Intensive Care Medicine, 2017, 43, 1866-1868.	3.9	4
352	Will all ARDS patients be receiving mechanical ventilation in 2035? We are not sure. Intensive Care Medicine, 2017, 43, 573-574.	3.9	4
353	Inflammation and primary graft dysfunction after lung transplantation: CT-PET findings. Minerva Anestesiologica, 2018, 84, 1169-1177.	0.6	4
354	Reply to Tobin et al.: Respiratory Drive Measurements Do Not Signify Conjectural Patient Self-inflicted Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 143-144.	2.5	4
355	Albumin Oxidation Status in Sepsis Patients Treated With Albumin or Crystalloids. Frontiers in Physiology, 2021, 12, 682877.	1.3	4
356	Adult respiratory distress syndrome (ARDS): why did ECMO fail?. International Journal of Artificial Organs, 1981, 4, 58-9.	0.7	4
357	Intracycle power distribution in a heterogeneous multi-compartmental mathematical model: possible links to strain and VILI. Intensive Care Medicine Experimental, 2022, 10, .	0.9	4
358	Diffusion of carbon monoxide: Any place in intensive care?*. Critical Care Medicine, 2010, 38, 314-315.	0.4	3
359	The 4DPRR Index and Mechanical Power: A Step Ahead or Four Steps Backward?. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 491-492.	2.5	3
360	Standardised PaO2/FiO2 ratio in COVID-19: Added value or risky assumptions?. European Journal of Internal Medicine, 2021, 92, 31-33.	1.0	3

#	Article	IF	CITATIONS
361	Long term feasibility of ultraprotective lung ventilation with low-flow extracorporeal carbon dioxide removal in ARDS patients. Journal of Critical Care, 2022, 71, 154092.	1.0	3
362	Hypoxaemia in COVID-19: many pieces to a complex puzzle. European Respiratory Review, 2022, 31, 220090.	3.0	3
363	ECMO in nonintubated patients as a bridge to lung transplant: our experience. Critical Care, 2012, 16, .	2.5	2
364	Recruited lung tissue does not resume normal mechanical properties. Critical Care, 2013, 17, .	2.5	2
365	Renal response and acid-base balance alterations during furosemide administration. Critical Care, 2013, 17, .	2.5	2
366	Evidence or belief-based medicine? Ten doubts. Intensive Care Medicine, 2017, 43, 1392-1394.	3.9	2
367	Last Word on Viewpoint: Looking beyond macrovenitlatory parameters and rethinking ventilator-induced lung injury. Journal of Applied Physiology, 2018, 124, 1220-1221.	1.2	2
368	Positional effects on the distributions of ventilation and end-expiratory gas volume in the asymmetric chestâ€"a quantitative lung computed tomographic analysis. Intensive Care Medicine Experimental, 2018, 6, 9.	0.9	2
369	Venous and arterial base excess difference: methodological error or physiological reality?. Intensive Care Medicine, 2019, 45, 1686-1687.	3.9	2
370	Reply by Zanella et al. to Swenson. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 908-909.	2.5	2
371	Inhalationally Administered Semifluorinated Alkanes (SFAs) as Drug Carriers in an Experimental Model of Acute Respiratory Distress Syndrome. Pharmaceutics, 2021, 13, 431.	2.0	2
372	Lung Structure and Function in Different Stages of Severe Adult Respiratory Distress Syndrome. Survey of Anesthesiology, 1994, 38, 313.	0.1	1
373	Prevalence of endotoxemia in a population of patients admitted to an intensive care unit after elective surgery. Critical Care, 2007, 11, P46.	2.5	1
374	Metformin increases platelet lactate production by inhibiting mitochondrial function. Critical Care, 2010, 14, P162.	2.5	1
375	Contribution of red blood cells to the compensation for hypocapnic alkalosis through plasmatic strong ion difference variations. Critical Care, 2011, 15, .	2.5	1
376	Strong ion difference and arterial bicarbonate concentration as cornerstones of the impact of fluid therapy on acid-base balance. Critical Care, 2013, 17, .	2.5	1
377	ECMO, ECCO2R: From origins to date. Reanimation: Journal De La Societe De Reanimation De Langue Francaise, 2013, 22, 567-570.	0.1	1
378	Acid-base effects of different crystalloid solutions for ECMO priming: preliminary report. Critical Care, 2015, 19, .	2.5	1

#	Article	IF	CITATIONS
379	Spatial Orientation and Mechanical Properties of the Human Trachea: A Computed Tomography Study. Respiratory Care, 2015, 60, 561-566.	0.8	1
380	Reply: Different Definitions of Lung Recruitment by Computed Tomography Scan. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1315-1316.	2.5	1
381	Impaired dynamics of clot formation and hypofibrinolysis in severe sepsis are coexisting and strictly related. Intensive Care Medicine, 2016, 42, 622-623.	3.9	1
382	Beyond Tidal Volume in Acute Respiratory Distress Syndrome: Semiautomated Screening and Novel Ventilator Concepts. Annals of the American Thoracic Society, 2019, 16, 1238-1240.	1.5	1
383	Response to Proning in Moderate to Severe Acute Respiratory Distress Syndrome: A New Talking Point in an Ongoing Conversation*. Critical Care Medicine, 2020, 48, 1889-1891.	0.4	1
384	From phenotypes to black holes… and back. Intensive Care Medicine, 2020, 46, 1498-1499.	3.9	1
385	Arterial and Venous Blood Gases. , 2009, , 607-611.		1
386	Acute Respiratory Failure. , 2010, , 231-240.		1
387	Sepsis: state of the art. Minerva Anestesiologica, 2003, 69, 539-54, 554-61.	0.6	1
388	Relative influence of hypoxemia and anemia on the measurement of central venous oxygen saturation. Critical Care, 2007, 11, P304.	2.5	0
389	Mechanical Ventilation in Acute Respiratory Distress Syndrome. , 2008, , 191-203.		0
390	Reply to Auzinger et al Intensive Care Medicine, 2010, 36, 178-179.	3.9	0
391	Reply to Agrafiotis. Intensive Care Medicine, 2010, 36, 901-902.	3.9	O
392	Continuous urinary electrolyte measurement in a swine model of mechanical ventilation. Critical Care, 2010, 14, P523.	2.5	0
393	Dilution with three different solutions: plasmatic effects and quantity and quality of urinary output. Critical Care, $2011, 15, .$	2.5	О
394	Strain threshold for ventilator-induced lung injury. Critical Care, 2011, 15, .	2.5	0
395	Metformin increases skeletal muscle lactate production in pigs: a microdialysis study. Critical Care, 2011, 15, .	2.5	0
396	Recruitability, recruitment, and tidal volume interactions: Is biologically variable ventilation a possible answer?*. Critical Care Medicine, 2011, 39, 1839-1840.	0.4	0

#	Article	IF	Citations
397	Compared values of presepsin (sCD14-ST) and procalcitonin as early markers of outcome in severe sepsis and septic shock: a preliminary report from the Albumin Italian Outcome Sepsis (ALBIOS) study. Critical Care, 2013 , 17 , .	2.5	O
398	Comparison between the standard and low-dose chest CT scans on the lung quantitative analysis in critically ill patients. Critical Care, $2013,17,.$	2.5	0
399	Urokinase-induced fibrinolysis in thromboelastography (UKIF-TEG) to assess fibrinolysis in critically ill patients. Critical Care, 2013, 17, .	2.5	0
400	Succinate ameliorates mitochondrial oxygen consumption of metformin-intoxicated human platelets. Critical Care, 2013, 17, .	2.5	0
401	Response. Chest, 2014, 145, 185.	0.4	0
402	0894. Time course of VILI development: a CT scan study. Intensive Care Medicine Experimental, 2014, 2, .	0.9	0
403	0990. Role of amplitude and rate of deformation in ventilator-induced lung injury. Intensive Care Medicine Experimental, $2014, 2, \ldots$	0.9	0
404	Effect of tidal volume and positive end-expiratory pressure on lung hysteresis of healthy piglets. Critical Care, 2014, 18, .	2.5	0
405	18-FDG PET in lung transplantation. Critical Care, 2015, 19, .	2.5	0
406	In Reply. Anesthesiology, 2016, 125, 1071-1072.	1.3	0
407	Deterioration of Lung Function in a Pig Model of Uncontrolled Cardiac Death. Transplantation Proceedings, 2016, 48, 431-434.	0.3	0
408	In Reply. Anesthesiology, 2016, 124, 736-737.	1.3	0
409	Reply: Lung Recruitment Assessment. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1276-1277.	2.5	0
410	Discussion on "Opening pressures and atelectrauma in acute respiratory distress syndrome― Intensive Care Medicine, 2017, 43, 1936-1937.	3.9	0
411	New insights in mechanical ventilation. Medizinische Klinik - Intensivmedizin Und Notfallmedizin, 2018, 113, 1-1.	0.4	0
412	Antipathy against SDD is justified: We are not sure. Intensive Care Medicine, 2018, 44, 1174-1176.	3.9	0
413	Reply to Nalos and Robergs and to De Backer and Vincent. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1071-1072.	2.5	0
414	Tailoring the cure: still science fiction?. Journal of Thoracic Disease, 2019, 11, E32-E33.	0.6	0

#	Article	IF	CITATIONS
415	"Established―Respiratory Treatment in Acute Respiratory Distress Syndrome: Scientific Rigor or a Square Peg in a Round Hole?. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 779-779.	2.5	O
416	The Evolution of Imaging in Respiratory Dysfunction Failure. , 2009, , 195-206.		0
417	Lung Reconditioning. , 2014, , 337-342.		0
418	Breathing face down. British Journal of Anaesthesia, 2022, , .	1.5	0