Ryan M Richards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1817160/publications.pdf

Version: 2024-02-01

158 7,273 48
papers citations h-index

194 194 194 12522 all docs docs citations times ranked citing authors

79

g-index

#	Article	IF	Citations
1	Nanocrystalline rhenium-doped TiO ₂ : an efficient catalyst in the one-pot conversion of carbohydrates into levulinic acid. The synergistic effect between BrA,nsted and Lewis acid sites. Catalysis Science and Technology, 2022, 12, 167-180.	2.1	4
2	FLICK: An optimized plate reader-based assay to infer cell death kinetics. STAR Protocols, 2021, 2, 100327.	0.5	8
3	Cubes to Cubes: Organization of MgO Particles into One-Dimensional and Two-Dimensional Nanostructures. Crystal Growth and Design, 2021, 21, 4674-4682.	1.4	17
4	Catalytic activity and water stability of the MgO(111) surface for 2-pentanone condensation. Applied Catalysis B: Environmental, 2021, 294, 120234.	10.8	9
5	Revealing the Dynamics and Roles of Iron Incorporation in Nickel Hydroxide Water Oxidation Catalysts. Journal of the American Chemical Society, 2021, 143, 18519-18526.	6.6	96
6	Beclin 1 Promotes Endosome Recruitment of Hepatocyte Growth Factor Tyrosine Kinase Substrate to Suppress Tumor Proliferation. Cancer Research, 2020, 80, 249-262.	0.4	21
7	Iridium Atoms Bonded to Crystalline Powder MgO: Characterization by Imaging and Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 459-468.	1.5	10
8	Drug GRADE: An Integrated Analysis of Population Growth and Cell Death Reveals Drug-Specific and Cancer Subtype-Specific Response Profiles. Cell Reports, 2020, 31, 107800.	2.9	15
9	A microwave assisted ionic liquid route to prepare bivalent Mn ₅ O ₈ nanoplates for 5-hydroxymethylfurfural oxidation. Nanoscale, 2020, 12, 17902-17914.	2.8	23
10	Drug antagonism and single-agent dominance result from differences in death kinetics. Nature Chemical Biology, 2020, $16,791-800$.	3.9	29
11	Targeted Catalyst Design to Combat Deactivation in the Liquid Phase. ACS Symposium Series, 2020, , 267-293.	0.5	O
12	Mesoporous silica supported samarium as recyclable heterogeneous catalyst for synthesis of 5-substituted tetrazole and 2-substituted benzothiazole. Journal of Porous Materials, 2019, 26, 145-155.	1.3	27
13	Channelrhodopsin-2 Function is Modulated by Residual Hydrophobic Mismatch with the Surrounding Lipid Environment. Applied Sciences (Switzerland), 2019, 9, 2674.	1.3	1
14	Modeling of Cisplatin-Induced Signaling Dynamics in Triple-Negative Breast Cancer Cells Reveals Mediators of Sensitivity. Cell Reports, 2019, 28, 2345-2357.e5.	2.9	25
15	Enhanced Catalyst Durability for Bio-Based Adipic Acid Production by Atomic Layer Deposition. Joule, 2019, 3, 2219-2240.	11.7	12
16	Direct high-resolution mapping of electrocatalytic activity of semi-two-dimensional catalysts with single-edge sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11618-11623.	3.3	65
17	Palladium oxide nanoparticles intercalated mesoporous silica for solvent free acceptorless dehydrogenation reactions of alcohols. Microporous and Mesoporous Materials, 2019, 284, 186-197.	2.2	19
18	Novel multi-metal containing MnCr catalyst made from manganese slag and chromium wastewater for effective selective catalytic reduction of nitric oxide at low temperature. Journal of Cleaner Production, 2018, 183, 917-924.	4.6	45

#	Article	IF	CITATIONS
19	Iodineâ€Catalyzed Isomerization of Dimethyl Muconate. ChemSusChem, 2018, 11, 1768-1780.	3.6	18
20	Carbon Capture by Metal Oxides: Unleashing the Potential of the (111) Facet. Journal of the American Chemical Society, 2018, 140, 4736-4742.	6.6	83
21	Deep eutectic solvent approach towards nickel/nickel nitride nanocomposites. Catalysis Today, 2018, 306, 9-15.	2.2	28
22	Strong Metal–Support Interactions of TiN– and TiO ₂ –Nickel Nanocomposite Catalysts. Journal of Physical Chemistry C, 2018, 122, 339-348.	1.5	22
23	Adsorption Characteristics of Perfluorosulfonic Acid Membrane Decomposition Products on a Platinum Electrode: An EQCM Study. Journal of the Electrochemical Society, 2018, 165, F1103-F1109.	1.3	6
24	Tumorâ€stroma interactions differentially alter drug sensitivity based on the origin of stromal cells. Molecular Systems Biology, 2018, 14, e8322.	3.2	25
25	Hybrid Mesoporous Silica/Noble-Metal Nanoparticle Materialsâ€"Synthesis and Catalytic Applications. ACS Applied Nano Materials, 2018, 1, 4386-4400.	2.4	103
26	Palladium Intercalated into the Walls of Mesoporous Silica as Robust and Regenerable Catalysts for Hydrodeoxygenation of Phenolic Compounds. ACS Omega, 2018, 3, 7681-7691.	1.6	23
27	Mesoporous silica supported ytterbium as catalyst for synthesis of 1,2â€disubstituted benzimidazoles and 2â€substituted benzimidazoles. Applied Organometallic Chemistry, 2018, 32, e4507.	1.7	16
28	Nature of active palladium sites on nitrogen doped carbon nanofibers in selective hydrogenation of acetylene. Diamond and Related Materials, 2018, 89, 67-73.	1.8	20
29	La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance. Journal of Power Sources, 2018, 375, 265-276.	4.0	23
30	Phosphotungstic Acid Based Mesoporous Silica Catalysts for the Preparation of Soybean Oil-Based Polyols. Catalysis Letters, 2017, 147, 716-726.	1.4	6
31	Deactivation of Multilayered MFI Nanosheet Zeolite during Upgrading of Biomass Pyrolysis Vapors. ACS Sustainable Chemistry and Engineering, 2017, 5, 5477-5484.	3.2	44
32	Intermediate selectivity in the oxidation of phenols using plasmonic Au/ZnO photocatalysts. Nanoscale, 2017, 9, 9359-9364.	2.8	8
33	Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chemistry, 2017, 19, 3468-3492.	4.6	201
34	Adjacent channelrhodopsin-2 residues within transmembranes 2 and 7 regulate cation selectivity and distribution of the two open states. Journal of Biological Chemistry, 2017, 292, 7314-7326.	1.6	16
35	Influence of carbon nanomaterials on the properties of Pd/C catalysts in selective hydrogenation of acetylene. Materials Research Bulletin, 2017, 88, 78-84.	2.7	27
36	Enhanced photo-degradation of bisphenol pollutants onto gold-modified photocatalysts. Catalysis Today, 2017, 284, 153-159.	2.2	27

3

#	Article	IF	Citations
37	Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures. Journal of Chemical Physics, 2016, 144, 144201.	1.2	29
38	Synthetic advancements and catalytic applications of nickel nitride. Catalysis Science and Technology, 2016, 6, 4059-4076.	2.1	45
39	Synthesis of high surface area $CaxLa(1\hat{a}^*x)Al(1\hat{a}^*x)MnxO(3\hat{a}^*\hat{l})$ perovskite oxides for oxygen reduction electrocatalysis in alkaline media. Catalysis Science and Technology, 2016, 6, 7744-7751.	2.1	12
40	Mechanistic Study of Shape-Anisotropic Nanomaterials Synthesized via Spontaneous Galvanic Displacement. Journal of Physical Chemistry C, 2016, 120, 25053-25060.	1.5	5
41	Elucidating Zeolite Deactivation Mechanisms During Biomass Catalytic Fast Pyrolysis from Model Reactions and Zeolite Syntheses. Topics in Catalysis, 2016, 59, 73-85.	1.3	19
42	Metallic nanocrystals synthesized in solution: a brief review of crystal shape theory and crystallographic characterization. Crystal Research and Technology, 2015, 50, 801-816.	0.6	5
43	Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica. Journal of Visualized Experiments, 2015, , e52349.	0.2	0
44	Cysteine Substitution and Labeling Provide Insight into Channelrhodopsin-2 Ion Conductance. Biochemistry, 2015, 54, 5665-5668.	1.2	5
45	Chemistry in Confined Pore Domains. World Scientific Series in Nanoscience and Nanotechnology, 2015, , 435-456.	0.1	0
46	Transitions from Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials. Nano Letters, 2015, 15, 1437-1444.	4.5	97
47	Semiconducting properties of spinel tin nitride and other IV ₃ N ₄ polymorphs. Journal of Materials Chemistry C, 2015, 3, 1389-1396.	2.7	49
48	Solidâ€State Conversion Reaction to Enhance Charge Transfer in Electrochromic Materials. Advanced Materials Interfaces, 2015, 2, 1400523.	1.9	7
49	Nickel oxide interlayer films from nickel formate–ethylenediamine precursor: influence of annealing on thin film properties and photovoltaic device performance. Journal of Materials Chemistry A, 2015, 3, 10949-10958.	5.2	45
50	Graphene as an Efficient Interfacial Layer for Electrochromic Devices. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11330-11336.	4.0	19
51	A hybrid photoelectrode with plasmonic Au@TiO ₂ nanoparticles for enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A, 2015, 3, 20127-20133.	5.2	68
52	Sodiation Kinetics of Metal Oxide Conversion Electrodes: A Comparative Study with Lithiation. Nano Letters, 2015, 15, 5755-5763.	4.5	122
53	Benchmarking the oxygen reduction reaction activity of Pt-based catalysts using standardized rotating disk electrode methods. International Journal of Hydrogen Energy, 2015, 40, 16820-16830.	3.8	47
54	Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique. Journal of the Electrochemical Society, 2015, 162, F1144-F1158.	1.3	261

#	Article	IF	Citations
55	From Phototaxis to Biomedical Applications: Investigating the Molecular Mechanism of Channelrhodopsins. Springer Series in Biophysics, 2015, , 361-381.	0.4	3
56	Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts. Journal of the Electrochemical Society, 2014, 161, F1360-F1365.	1.3	7
57	Iron Pyrite Nanocrystal Inks: Solvothermal Synthesis, Digestive Ripening, and Reaction Mechanism. Chemistry of Materials, 2014, 26, 6743-6751.	3.2	17
58	Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts. Journal of the Electrochemical Society, 2014, 161, F1481-F1488.	1.3	10
59	Shapeâ€directed platinum nanoparticle synthesis: nanoscale design of novel catalysts. Applied Organometallic Chemistry, 2014, 28, 1-17.	1.7	91
60	Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nature Communications, 2014, 5, 3358.	5.8	163
61	The influence of sol–gel processing on the electrochromic properties of mesoporous WO3 films produced by ultrasonic spray deposition. Solar Energy Materials and Solar Cells, 2014, 121, 163-170.	3.0	41
62	Inclusion of guest materials in aqueous coordination network shells spontaneously generated by reacting 2,5-dimercapto-1,3,4-thiadiazole with nanoscale metallic silver. RSC Advances, 2014, 4, 34294.	1.7	9
63	Thin film synthesis and properties of copper nitride, a metastable semiconductor. Materials Horizons, 2014, 1, 424-430.	6.4	116
64	Shape-directional growth of Pt and Pd nanoparticles. Nanoscale, 2014, 6, 11364-11371.	2.8	20
65	Real-time monitoring of the deactivation of HZSM-5 during upgrading of pine pyrolysis vapors. Green Chemistry, 2014, 16, 1444-1461.	4.6	112
66	Thermally stable gold/alumina aerogel catalysts prepared by a simultaneous synthesis process for solvent-free aerobic benzyl alcohol oxidation. Catalysis Science and Technology, 2014, 4, 2520-2525.	2.1	16
67	Electrochromic performance of nanocomposite nickel oxide counter electrodes containing lithium and zirconium. Solar Energy Materials and Solar Cells, 2014, 126, 206-212.	3.0	20
68	Insights into the Cation Permeation Pathway of Channelrhodopsin-2. Biophysical Journal, 2014, 106, 380a.	0.2	0
69	Effect of nitrogen post-doping on a commercial platinum–ruthenium/carbon anode catalyst. Journal of Power Sources, 2014, 248, 296-306.	4.0	15
70	Origin of Electrochromism in High-Performing Nanocomposite Nickel Oxide. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3643-3649.	4.0	73
71	Nitrogen-doped nickel oxide thin films for enhanced electrochromic applications. Thin Solid Films, 2013, 527, 26-30.	0.8	48
72	Palladium (0) metal clusters: Novel Krebs type polyoxoanions stabilized, extremely active hydrogenation catalyst. Applied Catalysis A: General, 2013, 453, 262-271.	2.2	14

#	Article	IF	CITATIONS
73	Polyoxotungstate stabilized palladium, gold, and silver nanoclusters: A study of cluster stability, catalysis, and effects of the stabilizing anions. Journal of Colloid and Interface Science, 2013, 394, 157-165.	5.0	21
74	Dispersion of TiO ₂ on highâ€surfaceâ€area mesoporous silica: functionalization with tungstophosphoric acid and application in solventâ€free, aerobic oxidation of <i>n</i> Applied Organometallic Chemistry, 2013, 27, 1-5.	1.7	9
75	Transmembrane Serine Mutations reduce the Minimum Pore Diameter of Channelrhodopsin-2. Biophysical Journal, 2013, 104, 630a.	0.2	0
76	Hole Doping in Al-Containing Nickel Oxide Materials To Improve Electrochromic Performance. ACS Applied Materials & Documents and Sciences (2013), 5, 301-309.	4.0	109
77	Nanoscale (111) faceted rock-salt metal oxides in catalysis. Catalysis Science and Technology, 2013, 3, 900-911.	2.1	59
78	Highlyâ€Tunable Nickel Cobalt Oxide as a Lowâ€Temperature Pâ€Type Contact in Organic Photovoltaic Devices. Advanced Energy Materials, 2013, 3, 524-531.	10.2	38
79	Self-assembled single-crystalline ZnO nanostructures. CrystEngComm, 2013, 15, 3780.	1.3	9
80	Photocatalytic Activity and Selectivity of ZnO Materials in the Decomposition of Organic Compounds. ChemCatChem, 2013, 5, 3841-3846.	1.8	23
81	Combinatorial approach to correlations of properties in copper nitride., 2013,,.		2
82	The molecular determinants of channelrhodopsinâ€2 ion conductance. FASEB Journal, 2013, 27, 590.10.	0.2	0
83	Low-temperature ozone exposure technique to modulate the stoichiometry of WO _{<i>x</i>} nanorods and optimize the electrochromic performance. Nanotechnology, 2012, 23, 255601.	1.3	33
84	Catalytic hydroprocessing of lignin under thermal and ultrasound conditions. Catalysis Today, 2012, 196, 3-10.	2.2	28
85	General strategy for one-pot synthesis of metal sulfide hollow spheres with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2012, 125, 180-188.	10.8	80
86	Effect of a nitrogen-doped PtRu/carbon anode catalyst on the durability of a direct methanol fuel cell. Journal of Power Sources, 2012, 217, 142-151.	4.0	41
87	Controlled Synthesis of Nanoscale Icosahedral Gold Particles at Room Temperature. ChemCatChem, 2012, 4, 1662-1667.	1.8	15
88	Nanoscale gold intercalated into mesoporous silica as a highly active and robust catalyst. Nanotechnology, 2012, 23, 294010.	1.3	16
89	Ultrasonic spray deposition of high performance WO3 films using template-assisted sol–gel chemistry. Electrochemistry Communications, 2012, 25, 62-65.	2.3	22
90	Analysis of Lipids: Metal Oxide Laser Ionization Mass Spectrometry. Analytical Chemistry, 2012, 84, 7677-7683.	3.2	37

#	Article	IF	CITATIONS
91	In situ crystallization of high performing WO3-based electrochromic materials and the importance for durability and switching kinetics. Journal of Materials Chemistry, 2012, 22, 16817.	6.7	77
92	Re-Introduction of Transmembrane Serine Residues Reduce the Minimum Pore Diameter of Channelrhodopsin-2. PLoS ONE, 2012, 7, e50018.	1.1	23
93	Preparation of MgO Nanosheets with Polar (111) Surfaces by Ligand Exchange and Esterification - Synthesis, Structure, and Application as Catalyst Support. European Journal of Inorganic Chemistry, 2012, 2012, 2869-2876.	1.0	36
94	Preparation and Characterization of Mgâ€Zr Mixed Oxide Aerogels and Their Application as Aldol Condensation Catalysts. ChemPhysChem, 2012, 13, 3282-3292.	1.0	25
95	Gold Nanoparticles Intercalated into the Walls of Mesoporous Silica as a Versatile Redox Catalyst. Industrial & Description of the Walls of Mesoporous Silica as a Versatile Redox Catalyst.	1.8	49
96	Experimental and DFT studies of gold nanoparticles supported on MgO(111) nano-sheets and their catalytic activity. Physical Chemistry Chemical Physics, 2011, 13, 2582.	1.3	41
97	Examining the Conformational Dynamics of Membrane Proteins in situ with Site-directed Fluorescence Labeling. Journal of Visualized Experiments, 2011, , .	0.2	9
98	Synthesis and Characterization of Titanium Dioxide Phases in Mesostructured Silica Matrices with Photocatalytic Activity. ChemCatChem, 2011, 3, 408-416.	1.8	6
99	Gram-scale wet chemical synthesis of wurtzite-8H nanoporous ZnS spheres with high photocatalytic activity. Applied Catalysis B: Environmental, 2011, 106, 212-219.	10.8	45
100	Surfaceâ€enhanced Raman spectroscopy in living plant using triplex AuAgC core–shell nanoparticles. Journal of Raman Spectroscopy, 2011, 42, 879-884.	1.2	27
101	Mg–Zr mixed oxides for aqueous aldol condensation of furfural with acetone: Effect of preparation method and activation temperature. Catalysis Today, 2011, 167, 77-83.	2.2	52
102	Transesterification of vegetable oils over CaO catalysts. Catalysis Today, 2011, 167, 64-70.	2.2	103
103	In situ study of ozone and hybrid plasma Ag–Al catalysts for the oxidation of toluene: Evidence of the nature of the active sites. Applied Catalysis B: Environmental, 2011, 104, 84-90.	10.8	53
104	Hydrocarbon–metal reactions during metal arc welding under oil (MAW-UO). Science and Technology of Welding and Joining, 2011, 16, 619-629.	1.5	5
105	Sol–gel-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior. Journal of Catalysis, 2010, 272, 92-100.	3.1	65
106	Triplex Au–Ag–C Core–Shell Nanoparticles as a Novel Raman Label. Advanced Functional Materials, 2010, 20, 969-975.	7.8	87
107	Controlled selectivity for palladium catalysts using self-assembled monolayers. Nature Materials, 2010, 9, 853-858.	13.3	358
108	Unusually large loads in 2007 from the Maumee and Sandusky Rivers, tributaries to Lake Erie. Journal of Soils and Water Conservation, 2010, 65, 450-462.	0.8	81

#	Article	IF	CITATIONS
109	In vivo Molecular Imaging of Plant Tissues Using a Novel Carbon Encapsulated SERS Tags. , 2010, , .		0
110	TiO ₂ Nanoflakes Modified with Gold Nanoparticles as Photocatalysts with High Activity and Durability under near UV Irradiation. Journal of Physical Chemistry C, 2010, 114, 1641-1645.	1.5	98
111	Chemistry of Rocksalt-Structured (111) Metal Oxides. ACS Symposium Series, 2010, , 51-76.	0.5	5
112	Review of Nanoscale Materials in Chemistry: Environmental Applications. ACS Symposium Series, 2010, , 1-13.	0.5	12
113	Adsorption Properties of MgO(111) Nanoplates for the Dye Pollutants from Wastewater. Journal of Chemical & Che	1.0	147
114	Synthesis and surface activity of single-crystalline Co3O4 (111) holey nanosheets. Nanoscale, 2010, 2, 1657.	2.8	51
115	NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater. Nanotechnology, 2009, 20, 275707.	1.3	119
116	Heterogeneous Wheelâ€6haped Cu ₂₀ â€Polyoxotungstate [Cu ₂₀ Cl(OH) ₂₄ (H ₂ O) ₁₂ (P ₈ W ₄₈ Catalyst for Solventâ€Free Aerobic Oxidation of <i>n</i> 2009, 15, 7490-7497.	O{sub>1	84 <i>ş[</i> şub>)] <s< td=""></s<>
117	Nanostructured Catalysts from the Liquid–Liquid Interface. ChemCatChem, 2009, 1, 435-436.	1.8	1
118	Organo-Ruthenium Supported Heteropolytungstates: Synthesis, Structure, Electrochemistry, and Oxidation Catalysis. Inorganic Chemistry, 2009, 48, 10068-10077.	1.9	65
119	Three-Dimensional Morphology Control during Wet Chemical Synthesis of Porous Chromium Oxide Spheres. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1931-1937.	4.0	30
120	Intercalation of Aggregation-Free and Well-Dispersed Gold Nanoparticles into the Walls of Mesoporous Silica as a Robust "Green―Catalyst for ⟨i>n⟨/i>-Alkane Oxidation. Journal of the American Chemical Society, 2009, 131, 914-915.	6.6	119
121	Structural and Morphological Characterization of Catalytically-Active Co3O4 Powders. Microscopy and Microanalysis, 2009, 15, 1288-1289.	0.2	0
122	Introduction to Nanoscale Materials in Chemistry, Edition II., 2009, , 1-14.		3
123	Heterogeneous Gold Catalysts for Efficient Access to Functionalized Lactones. Chemistry - A European Journal, 2008, 14, 9412-9418.	1.7	65
124	Catalytic Properties of Nanoscale Ironâ€Doped Zirconia Solidâ€Solution Aerogels. ChemPhysChem, 2008, 9, 1069-1078.	1.0	39
125	Preparation and Surface Activity of Singleâ€Crystalline NiO(111) Nanosheets with Hexagonal Holes: A Semiconductor Nanospanner. Advanced Materials, 2008, 20, 267-271.	11.1	90
126	Iron oxide colloids and their heterogenization by silica sol–gel entrapment: Catalytic and magnetic properties. Applied Catalysis A: General, 2008, 346, 28-35.	2.2	11

#	Article	IF	CITATIONS
127	Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chemistry, 2008, 10, 373-381.	4.6	238
128	Size Tunable Gold Nanorods Evenly Distributed in the Channels of Mesoporous Silica. ACS Nano, 2008, 2, 1205-1212.	7.3	55
129	Synphos modified Pt nanoclusters, their heterogenization by silica sol–gel entrapment, and catalytic activity in hydrogenolysis of bicyclo[2.2.2]oct-7-enes and hydrogenation of ethyl pyruvate. Nanotechnology, 2008, 19, 225702.	1.3	4
130	Solvent-Free Aerobic Oxidation of <i>n</i> -Alkane by Iron(III)-Substituted Polyoxotungstates Immobilized on SBA-15. Inorganic Chemistry, 2007, 46, 8457-8459.	1.9	58
131	MgO(111) Nanosheets with Unusual Surface Activity. Journal of Physical Chemistry C, 2007, 111, 12038-12044.	1.5	133
132	Enantioselective hydrogenation of ethyl pyruvate over diop modified Pt nanoclusters. Determination of geometry of the ligand adsorption mode via DRIFTS. Physical Chemistry Chemical Physics, 2007, 9, 884.	1.3	13
133	Mesoporous Pt–SiO2 and Pt–SiO2–Ta2O5 Catalysts Prepared Using Pt Colloids as Templates. ChemPhysChem, 2007, 8, 666-678.	1.0	9
134	Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts. Applied Catalysis B: Environmental, 2007, 76, 275-281.	10.8	70
135	Aerobic oxidation of alcohols catalyzed by gold nano-particles confined in the walls of mesoporous silica. Catalysis Today, 2007, 122, 277-283.	2.2	86
136	Determination of geometric orientation of adsorbed cinchonidine on Pt and Fe and quiphos on Pt nanoclusters via DRIFTS. Physical Chemistry Chemical Physics, 2006, 8, 1321.	1.3	28
137	Synthesis of Metal-Oxide Nanoparticles: Liquid-Solid Transformations. , 2006, , 81-117.		11
138	Preparation of thermally stable high surface area mesoporous tetragonal ZrO2 and Pt/ZrO2: An active hydrogenation catalyst. Microporous and Mesoporous Materials, 2006, 88, 22-30.	2.2	29
139	Ionic liquid templated high surface area mesoporous silica and Ru–SiO2. Microporous and Mesoporous Materials, 2006, 91, 40-46.	2.2	41
140	Synthesis and characterization of tungsten-substituted SBA-15: An enhanced catalyst for 1-butene metathesis. Microporous and Mesoporous Materials, 2006, 93, 158-163.	2.2	82
141	Preparation and chiral activation of cinchonidine modified Pt nanoclusters deposited on an alumina support: Influence of catalyst nature on obtained enantiomeric excess in ethyl pyruvate hydrogenation at low pressures. Applied Catalysis A: General, 2006, 314, 1-8.	2.2	10
142	Anion-driven self-assembly of tetrapyridyl ligand with a twist. Journal of Molecular Structure, 2006, 796, 216-222.	1.8	8
143	Examination of catalytic behavior and origin of the initial transient period for Pt nanoclusters modified with cinchonidine. Catalysis Letters, 2006, 110, 91-99.	1.4	12
144	Highly efficient tungsten-substituted mesoporous SBA-15 catalysts for 1-butene metathesis. Materials Letters, 2006, 60, 3059-3062.	1.3	14

#	Article	IF	CITATIONS
145	Characterization and Catalytic-Hydrogenation Behavior of SiO2-Embedded Nanoscopic Pd, Au, and Pd–Au Alloy Colloids. Chemistry - A European Journal, 2006, 12, 2343-2357.	1.7	73
146	Efficient Preparation and Catalytic Activity of MgO(111) Nanosheets. Angewandte Chemie - International Edition, 2006, 45, 7277-7281.	7.2	149
147	Planting of bis(1,5-cyclooctadiene) nickel upon silica to harvest NiO (<5 nm) nanoparticles in a silica matrix. Applied Organometallic Chemistry, 2005, 19, 1065-1069.	1.7	2
148	Synthetic Approaches to Metallic Nanomaterials. , 2005, , 1-32.		12
149	A colloid "digesting―route to novel, thermally stable high surface area ZrO2 and Pd/ZrO2 catalytic materials. Journal of Colloid and Interface Science, 2005, 292, 476-485.	5.0	11
150	Aerobic oxidation of cyclohexane by gold nanoparticles immobilized upon mesoporous silica. Catalysis Letters, 2005, 100, 195-199.	1.4	87
151	In situ approaches to establish colloidal growth kinetics. Journal of Colloid and Interface Science, 2004, 279, 458-463.	5.0	23
152	ESR study of nanocrystalline aerogel-prepared magnesium oxide. Physical Chemistry Chemical Physics, 2003, 5, 4299.	1.3	42
153	Nanocrystalline MgO as a Dehydrohalogenation Catalyst. Journal of Catalysis, 2002, 206, 40-48.	3.1	143
154	Changes in Texture and Catalytic Activity of Nanocrystalline MgO during Its Transformation to MgCl2 in the Reaction with 1-Chlorobutane. Journal of Physical Chemistry B, 2001, 105, 3937-3941.	1.2	32
155	Nanocrystalline ultra high surface area magnesium oxide as a selective base catalyst. Scripta Materialia, 2001, 44, 1663-1666.	2.6	43
156	Consolidation of Metal Oxide Nanocrystals. Reactive Pellets with Controllable Pore Structure That Represent a New Family of Porous, Inorganic Materials. Journal of the American Chemical Society, 2000, 122, 4921-4925.	6.6	239
157	Oxidation Catalysis by Nanoscale Gold, Silver, and Copper. , 0, , 333-364.		1
158	MgO(111) Nanocatalyst for Biomass Conversion: A Study of Carbon Coating Effects on Catalyst Faceting and Performance. Catalysis Letters, 0 , 1 .	1.4	1