Richard Querel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1817088/publications.pdf

Version: 2024-02-01

61 papers 4,733 citations

361296 20 h-index 52 g-index

97 all docs

97
docs citations

97 times ranked 10090 citing authors

#	Article	IF	Citations
1	Optimized Umkehr profile algorithm for ozone trend analyses. Atmospheric Measurement Techniques, 2022, 15, 1849-1870.	1.2	4
2	The Antarctic ozone hole during 2020. Journal of Southern Hemisphere Earth Systems Science, 2022, 72, 19-37.	0.7	11
3	Ground-based validation of the MetOp-A and MetOp-B GOME-2 OClO measurements. Atmospheric Measurement Techniques, 2022, 15, 3439-3463.	1.2	0
4	The Antarctic ozone hole during 2018 and 2019. Journal of Southern Hemisphere Earth Systems Science, 2021, 71, 66-91.	0.7	12
5	Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO ₂ measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmospheric Measurement Techniques, 2021, 14, 481-510.	1.2	142
6	Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0). Geoscientific Model Development, 2021, 14, 43-72.	1.3	13
7	COVIDâ€19 Crisis Reduces Free Tropospheric Ozone Across the Northern Hemisphere. Geophysical Research Letters, 2021, 48, e2020GL091987.	1.5	51
8	Southern Ocean cloud and aerosol data: a compilation of measurements from the 2018 Southern Ocean Ross Sea Marine Ecosystems and Environment voyage. Earth System Science Data, 2021, 13, 3115-3153.	3.7	16
9	Transport and Variability of Tropospheric Ozone over Oceania and Southern Pacific during the 2019–20 Australian Bushfires. Remote Sensing, 2021, 13, 3092.	1.8	2
10	Ozone profile retrieval from nadir TROPOMI measurements in the UV range. Atmospheric Measurement Techniques, 2021, 14, 6057-6082.	1.2	9
11	Validation and Trend Analysis of Stratospheric Ozone Data from Ground-Based Observations at Lauder, New Zealand. Remote Sensing, 2021, 13, 109.	1.8	7
12	No pulsed radio emission during a bursting phase of a Galactic magnetar. Nature, 2020, 587, 63-65.	13.7	101
13	Validation of SAGE III/ISS Solar Occultation Ozone Products With Correlative Satellite and Groundâ€Based Measurements. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032430.	1.2	24
14	A Postâ€2013 Dropoff in Total Ozone at a Third of Global Ozonesonde Stations: Electrochemical Concentration Cell Instrument Artifacts?. Geophysical Research Letters, 2020, 47, e2019GL086791.	1.5	19
15	Possible Effects of Greenhouse Gases to Ozone Profiles and DNA Active UV-B Irradiance at Ground Level. Atmosphere, 2020, 11, 228.	1.0	20
16	Early results and validation of SAGE III-ISS ozone profile measurements from onboard the International Space Station. Atmospheric Measurement Techniques, 2020, 13, 1287-1297.	1.2	8
17	Global-scale distribution of ozone in the remote troposphere from the ATom and HIPPO airborne field missions. Atmospheric Chemistry and Physics, 2020, 20, 10611-10635.	1.9	31
18	Intercomparison of NO ₂ , O ₄ and HCHO slant column measurements by MAX-DOAS and zenith-sky UVâ€"visible spectrometers during CINDI-2. Atmospheric Measurement Techniques, 2020, 13, 2169-2208.	1.2	52

#	Article	IF	CITATIONS
19	Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign. Atmospheric Measurement Techniques, 2020, 13, 5087-5116.	1.2	18
20	Comparison of formaldehyde tropospheric columns in Australia and New Zealand using MAX-DOAS, FTIR and TROPOMI. Atmospheric Measurement Techniques, 2020, 13, 6501-6519.	1.2	5
21	Surface and tropospheric ozone trends in the Southern Hemisphere since 1990: possible linkages to poleward expansion of the Hadley circulation. Science Bulletin, 2019, 64, 400-409.	4.3	40
22	Lower atmosphere and pressure evolution on Pluto from ground-based stellar occultations, 1988–2016. Astronomy and Astrophysics, 2019, 625, A42.	2.1	29
23	Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elementa, 2018, 6, .	1.1	240
24	Combining data from the distributed GRUAN site Lauder–Invercargill, New Zealand, to provide a site atmospheric state best estimate of temperature. Earth System Science Data, 2018, 10, 2195-2211.	3.7	6
25	Multi-messenger Observations of a Binary Neutron Star Merger < sup>*. Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
26	Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry–climate model simulations. Atmospheric Chemistry and Physics, 2017, 17, 10495-10513.	1.9	9
27	An update on ozone profile trends for the period 2000 to 2016. Atmospheric Chemistry and Physics, 2017, 17, 10675-10690.	1.9	93
28	Investigating differences in DOAS retrieval codes using MAD-CAT campaign data. Atmospheric Measurement Techniques, 2017, 10, 955-978.	1.2	20
29	Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations. Atmospheric Measurement Techniques, 2017, 10, 2455-2475.	1.2	53
30	Intercomparison of Pandora stratospheric NO ₂ slant column product with the NDACC-certified M07 spectrometer in Lauder, New Zealand. Atmospheric Measurement Techniques, 2017, 10, 4363-4372.	1,2	4
31	The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations. Atmospheric Measurement Techniques, 2016, 9, 79-92.	1.2	86
32	Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records. Atmospheric Measurement Techniques, 2016, 9, 2497-2534.	1.2	92
33	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
34	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
35	PLUTO'S ATMOSPHERE FROM THE 2015 JUNE 29 GROUND-BASED STELLAR OCCULTATION AT THE TIME OF T NEW HORIZONS FLYBY*. Astrophysical Journal Letters, 2016, 819, L38.	THE 3.0	82
36	Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand. Atmospheric Chemistry and Physics, 2016, 16, 14599-14619.	1.9	2

#	Article	IF	CITATIONS
37	Through thick and thin: quantitative classification of photometric observing conditions on Paranal. Proceedings of SPIE, 2016 , , .	0.8	1
38	Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records., 2016, 9, 2497-2534.		9
39	Subtropical and midlatitude ozone trends in the stratosphere: Implications for recovery. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7247-7257.	1.2	22
40	Unusual stratospheric ozone anomalies observed in 22 years of measurements from Lauder, New Zealand. Atmospheric Chemistry and Physics, 2015, 15, 6817-6826.	1.9	16
41	Past changes in the vertical distribution of ozone – Part 3: Analysis and interpretation of trends. Atmospheric Chemistry and Physics, 2015, 15, 9965-9982.	1.9	115
42	The water vapour radiometer of Paranal: homogeneity of precipitable water vapour from two years of operations. Journal of Physics: Conference Series, 2015, 595, 012017.	0.3	2
43	An episode of extremely low precipitable water vapour over Paranal observatory. Monthly Notices of the Royal Astronomical Society, 2014, 439, 247-255.	1.6	26
44	The Earth as an extrasolar transiting planet. Astronomy and Astrophysics, 2014, 564, A58.	2.1	21
45	All-sky homogeneity of precipitable water vapour over Paranal. Proceedings of SPIE, 2014, , .	0.8	6
46	Quantifying photometric observing conditions on Paranal using an IR camera. , 2014, , .		1
47	The Life Cycle of a Radiosonde. Bulletin of the American Meteorological Society, 2013, 94, 187-198.	1.7	14
48	Tools for DIY site-testing. , 2012, , .		1
49	A water vapour monitor at Paranal Observatory. Proceedings of SPIE, 2012, , .	0.8	17
50	Spectroscopic Determination of Atmospheric Water Vapor. Publications of the Astronomical Society of the Pacific, 2011, 123, 222-229.	1.0	17
51	Lunar absorption spectrophotometer for measuring atmospheric water vapor. Applied Optics, 2011, 50, 447.	2.1	2
52	Giant Magellan Telescope site testing: PWV statistics and calibration. Proceedings of SPIE, 2010, , .	0.8	6
53	Support for site testing of the European Extremely Large Telescope: precipitable water vapor over La Silla. Proceedings of SPIE, 2010, , .	0.8	4
54	Measuring and forecasting of PWV above La Silla, APEX and Paranal Observatories., 2010,,.		2

#	Article	IF	CITATIONS
55	Support for site testing of the European Extremely Large Telescope: precipitable water vapor over Paranal. , 2010, , .		8
56	Thirty Meter Telescope Site Testing X: Precipitable Water Vapor. Publications of the Astronomical Society of the Pacific, 2010, 122, 470-484.	1.0	45
57	Atmospheric water vapour content over La Silla Paranal Observatory. Proceedings of the International Astronomical Union, 2009, 5, 537-537.	0.0	0
58	IRMA as a Potential Phase Correction Instrument: Results from the SMA Test Campaign. Journal of Infrared, Millimeter and Terahertz Waves, 2008, 29, 1196-1204.	0.6	4
59	Comparison of precipitable water vapour measurements made with an optical echelle spectrograph and an infrared radiometer at Las Campanas Observatory. Proceedings of SPIE, 2008, , .	0.8	7
60	Design of an infrared water vapour monitor for measurements of the atmospheric water content in Antarctica. , 2007, , .		1
61	Comparison of PWV measurements determined from co-located water vapour monitors used in the Thirty Meter Telescope site testing campaign. , 2007, , .		0