Maria Adelaida Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1817045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pentoxifylline in the Treatment of Cutaneous Leishmaniasis: A Randomized Clinical Trial in Colombia. Pathogens, 2022, 11, 378.	2.8	1
2	lmmuno-pharmacokinetics of Meglumine Antimoniate in Patients With Cutaneous Leishmaniasis Caused by <i>Leishmania</i> (<i>Viannia</i>). Clinical Infectious Diseases, 2021, 72, e484-e492.	5.8	4
3	Inductively coupled plasma mass spectrometry method for plasma and intracellular antimony quantification applied to pharmacokinetics of meglumine antimoniate. Bioanalysis, 2021, 13, 655-667.	1.5	2
4	Performance verification of the Abbott SARS-CoV-2 test for qualitative detection of IgG in Cali, Colombia. PLoS ONE, 2021, 16, e0256566.	2.5	3
5	Early Leukocyte Responses in Ex-Vivo Models of Healing and Non-Healing Human Leishmania (Viannia) panamensis Infections. Frontiers in Cellular and Infection Microbiology, 2021, 11, 687607.	3.9	2
6	Profiles of Local and Systemic Inflammation in the Outcome of Treatment of Human Cutaneous Leishmaniasis Caused by <i>Leishmania</i> (<i>Viannia</i>). Infection and Immunity, 2020, 88, .	2.2	15
7	Immune Profile of the Nasal Mucosa in Patients with Cutaneous Leishmaniasis. Infection and Immunity, 2020, 88, .	2.2	5
8	Comparative Assessment of DNA Targets and Amplification Methods for Leishmania (Viannia) Detection in Human Samples. American Journal of Tropical Medicine and Hygiene, 2020, 102, 1323-1327.	1.4	6
9	Phenotypic and functional stability of leukocytes from human peripheral blood samples: considerations for the design of immunological studies. BMC Immunology, 2019, 20, 5.	2.2	18
10	Pharmacometabolomics of Meglumine Antimoniate in Patients With Cutaneous Leishmaniasis. Frontiers in Pharmacology, 2019, 10, 657.	3.5	15
11	Development and Evaluation of a Novel Loop-Mediated Isothermal Amplification Assay for Diagnosis of Cutaneous and Visceral Leishmaniasis. Journal of Clinical Microbiology, 2018, 56, .	3.9	68
12	Resistance of Leishmania (Viannia) Panamensis to Meglumine Antimoniate or Miltefosine Modulates Neutrophil Effector Functions. Frontiers in Immunology, 2018, 9, 3040.	4.8	9
13	Simultaneous population pharmacokinetic modelling of plasma and intracellular PBMC miltefosine concentrations in New World cutaneous leishmaniasis and exploration of exposure–response relationships. Journal of Antimicrobial Chemotherapy, 2018, 73, 2104-2111.	3.0	11
14	Pharmacokinetics of Miltefosine in Children and Adults with Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	41
15	Profiling gene expression of antimony response genes in Leishmania (Viannia) panamensis and infected macrophages and its relationship with drug susceptibility. Acta Tropica, 2017, 176, 355-363.	2.0	15
16	Clinical and parasitological factors in parasite persistence after treatment and clinical cure of cutaneous leishmaniasis. PLoS Neglected Tropical Diseases, 2017, 11, e0005713.	3.0	39
17	Functional Validation of ABCA3 as a Miltefosine Transporter in Human Macrophages. Journal of Biological Chemistry, 2016, 291, 9638-9647.	3.4	9
18	Parasitological Confirmation and Analysis of Leishmania Diversity in Asymptomatic and Subclinical Infection following Resolution of Cutaneous Leishmaniasis. PLoS Neglected Tropical Diseases, 2015, 9, e0004273.	3.0	31

#	Article	IF	CITATIONS
19	First report of Warileya rotundipennis (Psychodidae: Phlebotominae) naturally infected with Leishmania (Viannia) in a focus of cutaneous leishmaniasis in Colombia. Acta Tropica, 2015, 148, 191-196.	2.0	15
20	Sensitive diagnosis of cutaneous leishmaniasis by lesion swab sampling coupled to qPCR. Parasitology, 2014, 141, 1891-1897.	1.5	59
21	Miltefosine and Antimonial Drug Susceptibility of Leishmania Viannia Species and Populations in Regions of High Transmission in Colombia. PLoS Neglected Tropical Diseases, 2014, 8, e2871.	3.0	59
22	Leishmania panamensis infection and antimonial drugs modulate expression of macrophage drug transporters and metabolizing enzymes: impact on intracellular parasite survival. Journal of Antimicrobial Chemotherapy, 2014, 69, 139-149.	3.0	26
23	Treatment Failure and Miltefosine Susceptibility in Dermal Leishmaniasis Caused by Leishmania Subgenus Viannia Species. Antimicrobial Agents and Chemotherapy, 2014, 58, 144-152.	3.2	47
24	Chronicity of Dermal Leishmaniasis Caused by Leishmania panamensis Is Associated with Parasite-Mediated Induction of Chemokine Gene Expression. Infection and Immunity, 2014, 82, 2872-2880.	2.2	26
25	Discovery of factors linked to antimony resistance in Leishmania panamensis through differential proteome analysis. Molecular and Biochemical Parasitology, 2012, 183, 166-176.	1.1	73
26	Leishmania Repression of Host Translation through mTOR Cleavage Is Required for Parasite Survival and Infection. Cell Host and Microbe, 2011, 9, 331-341.	11.0	153
27	Toll-Like Receptors Participate in Macrophage Activation and Intracellular Control of Leishmania (Viannia) panamensis. Infection and Immunity, 2011, 79, 2871-2879.	2.2	60
28	Leishmania (Viannia) Infection in the Domestic Dog in Chaparral, Colombia. American Journal of Tropical Medicine and Hygiene, 2011, 84, 674-680.	1.4	34
29	Protein Tyrosine Phosphatases Are Regulated by Mononuclear Iron Dicitrate. Journal of Biological Chemistry, 2010, 285, 24620-24628.	3.4	25
30	Leishmania-Induced Inactivation of the Macrophage Transcription Factor AP-1 Is Mediated by the Parasite Metalloprotease GP63. PLoS Pathogens, 2010, 6, e1001148.	4.7	126
31	Proteases and phosphatases during leishmania-macrophage interaction: Paving the road for pathogenesis. Virulence, 2010, 1, 314-318.	4.4	22
32	<i>Leishmania</i> GP63 Alters Host Signaling Through Cleavage-Activated Protein Tyrosine Phosphatases. Science Signaling, 2009, 2, ra58.	3.6	170
33	The Leishmania Surface Protease CP63 Cleaves Multiple Intracellular Proteins and Actively Participates in p38 Mitogen-activated Protein Kinase Inactivation. Journal of Biological Chemistry, 2009, 284, 6893-6908.	3.4	120
34	NRAMP-1 Expression Modulates Protein-tyrosine Phosphatase Activity in Macrophages. Journal of Biological Chemistry, 2007, 282, 36190-36198.	3.4	30
35	Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Molecular and Biochemical Parasitology, 2006, 147, 64-73.	1.1	82