Aimee Louise McNamara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1817003/publications.pdf

Version: 2024-02-01

56 papers 1,552 citations

346980 22 h-index 355658 38 g-index

57 all docs

57 docs citations

57 times ranked

1528 citing authors

#	Article	IF	CITATIONS
1	Investigation of Micron-Scale Radiotherapy Dose Deposition in the Lung: Effect of Magnetic Field and Nanoparticles—a Monte Carlo Simulation. Frontiers in Physics, 2022, 10, .	1.0	2
2	Particle detection and tracking with DNA. European Physical Journal C, 2022, 82, 1.	1.4	2
3	Challenges in the quantification approach to a radiation relevant adverse outcome pathway for lung cancer. International Journal of Radiation Biology, 2021, 97, 85-101.	1.0	4
4	The impact of variable relative biological effectiveness in proton therapy for left-sided breast cancer when estimating normal tissue complications in the heart and lung. Physics in Medicine and Biology, 2021, 66, 035023.	1.6	10
5	Modelling variable proton relative biological effectiveness for treatment planning. British Journal of Radiology, 2020, 93, 20190334.	1.0	35
6	A tumor-immune interaction model for hepatocellular carcinoma based on measured lymphocyte counts in patients undergoing radiotherapy. Radiotherapy and Oncology, 2020, 151, 73-81.	0.3	26
7	Cellular Response to Proton Irradiation: A Simulation Study with TOPAS-nBio. Radiation Research, 2020, 194, 9.	0.7	30
8	A parameter sensitivity study for simulating DNA damage after proton irradiation using TOPAS-nBio. Physics in Medicine and Biology, 2020, 65, 085015.	1.6	31
9	End-of-Range Radiobiological Effect on Rib Fractures in Patients Receiving Proton Therapy for Breast Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 107, 449-454.	0.4	51
10	The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Physica Medica, 2020, 72, 114-121.	0.4	126
11	Perspectives on the model-based approach to proton therapy trials: A retrospective study of a lung cancer randomized trial. Radiotherapy and Oncology, 2020, 147, 8-14.	0.3	7
12	Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams. Physics in Medicine and Biology, 2019, 64, 175005.	1.6	36
13	An Increased Rib Fracture Rate in Patients Receiving Proton Therapy for Breast Cancer is Correlated with the End-of-range Radiobiological Effect. International Journal of Radiation Oncology Biology Physics, 2019, 105, E61.	0.4	O
14	The microdosimetric extension in TOPAS: development and comparison with published data. Physics in Medicine and Biology, 2019, 64, 145004.	1.6	26
15	IMPACT OF NANOPARTICLE CLUSTERING ON DOSE RADIO-ENHANCEMENT. Radiation Protection Dosimetry, 2019, 183, 50-54.	0.4	10
16	A high DQE waterâ€equivalent EPID employing an array of plasticâ€scintillating fibers for simultaneous imaging and dosimetry in radiotherapy. Medical Physics, 2018, 45, 2154-2168.	1.6	5
17	Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio. Physics in Medicine and Biology, 2018, 63, 105014.	1.6	58
18	A New Standard DNA Damage (SDD) Data Format. Radiation Research, 2018, 191, 76.	0.7	49

#	Article	IF	CITATIONS
19	TOPAS-nBio: An Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology. Radiation Research, 2018, 191, 125.	0.7	124
20	Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit. Physics in Medicine and Biology, 2018, 63, 175018.	1.6	36
21	Mitochondria as a target for radiosensitisation by gold nanoparticles. Journal of Physics: Conference Series, 2017, 777, 012008.	0.3	10
22	Comparing stochastic proton interactions simulated using TOPAS-nBio to experimental data from fluorescent nuclear track detectors. Physics in Medicine and Biology, 2017, 62, 3237-3249.	1.6	10
23	Dependence of gold nanoparticle radiosensitization on cell geometry. Nanoscale, 2017, 9, 5843-5853.	2.8	61
24	Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries. Physica Medica, 2017, 33, 207-215.	0.4	70
25	Hematologic Toxicities During Treatment Allow for Improved Prediction of Recurrences in Pediatric Medulloblastoma. International Journal of Radiation Oncology Biology Physics, 2017, 99, E591-E592.	0.4	O
26	Characterization of proton pencil beam scanning and passive beam using a high spatial resolution solidâ€state microdosimeter. Medical Physics, 2017, 44, 6085-6095.	1.6	53
27	A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation. Scientific Reports, 2017, 7, 10790.	1.6	50
28	Polarisation-based coincidence event discrimination: an <i>in silico</i> scheme for Compton-PET. Physics in Medicine and Biology, 2016, 61, 5803-5817.	1.6	19
29	Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol. Physics in Medicine and Biology, 2016, 61, 5993-6010.	1.6	49
30	WE-H-BRA-07: Mechanistic Modelling of the Relative Biological Effectiveness of Heavy Charged Particles. Medical Physics, 2016, 43, 3844-3844.	1.6	0
31	WE-H-BRA-04: Biological Geometries for the Monte Carlo Simulation Toolkit TOPASNBio. Medical Physics, 2016, 43, 3843-3843.	1.6	0
32	SU-F-T-132: Variable RBE Models Predict Possible Underestimation of Vaginal Dose for Anal Cancer Patients Treated Using Single-Field Proton Treatments. Medical Physics, 2016, 43, 3492-3492.	1.6	1
33	A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published <i>in vitro </i> cell survival data. Physics in Medicine and Biology, 2015, 60, 8399-8416.	1.6	246
34	Feasibility study of a dual detector configuration concept for simultaneous megavoltage imaging and dose verification in radiotherapy. Medical Physics, 2015, 42, 1753-1764.	1.6	7
35	Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints. Physics in Medicine and Biology, 2015, 60, 5053-5070.	1.6	56
36	The cytoplasm as a radiation target: an in silico study of microbeam cell irradiation. Physics in Medicine and Biology, 2015, 60, 2325-2337.	1.6	10

#	Article	lF	Citations
37	Revealing the underlying mechanism of microbeam radiation therapy with low energy Monte Carlo simulations. Journal of Physics: Conference Series, 2014, 489, 012018.	0.3	2
38	Towards optimal imaging with PET: an <i>in silico</i> feasibility study. Physics in Medicine and Biology, 2014, 59, 7587-7600.	1.6	18
39	Optimisation of the imaging and dosimetric characteristics of an electronic portal imaging device employing plastic scintillating fibres using Monte Carlo simulations. Physics in Medicine and Biology, 2014, 59, 6827-6840.	1.6	6
40	Monte Carlo simulation of the transit dosimetric response of an <i>a</i> -Si electronic portal imaging device. Journal of Physics: Conference Series, 2014, 489, 012005.	0.3	4
41	Predicted ionisation in mitochondria and observed acute changes in the mitochondrial transcriptome after gamma irradiation: A Monte Carlo simulation and quantitative PCR study. Mitochondrion, 2013, 13, 736-742.	1.6	23
42	Radiation damage on sub-cellular scales: beyond DNA. Physics in Medicine and Biology, 2013, 58, 1251-1267.	1.6	24
43	Positron emission tomography coincidence detection with photon polarization correlation. Proceedings of SPIE, 2013, , .	0.8	3
44	Evaluating radiation damage to scintillating plastic fibers with Monte Carlo simulations. Proceedings of SPIE, 2013, , .	0.8	0
45	Characterization of a novel EPID designed for simultaneous imaging and dose verification in radiotherapy. Medical Physics, 2013, 40, 091902.	1.6	23
46	Characterization of optical transport effects on EPID dosimetry using Geant4. Medical Physics, 2013, 40, 041708.	1.6	22
47	A new concept in detector design for radiation therapy: Simultaneous imaging and dosimetry for comprehensive treatment verification. , 2013 , , .		2
48	A comparison of X-ray and proton beam low energy secondary electron track structures using the low energy models of Geant4. International Journal of Radiation Biology, 2012, 88, 164-170.	1.0	10
49	<i>In Silico</i> Nanodosimetry: New Insights into Nontargeted Biological Responses to Radiation. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-9.	0.7	15
50	The determination of the efficiency of a Compton suppressed HPGe detector using Monte Carlo simulations. Journal of Environmental Radioactivity, 2012, 106, 1-7.	0.9	16
51	TH-C-BRA-11: First Experiments of a Prototype Device for Simultaneous Imaging and Dose Verification in Radiotherapy. Medical Physics, 2012, 39, 4002-4002.	1.6	1
52	SU-E-I-109: Sensitivity Analysis of an Electronic Portal Imaging Device Monte Carlo Model to Variations in Optical Transport Parameters. Medical Physics, 2012, 39, 3650-3650.	1.6	0
53	Polarization enhanced X-ray imaging for biomedicine. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 648, S208-S210.	0.7	9
54	X-ray polarization in relativistic jets. Monthly Notices of the Royal Astronomical Society, 2009, 395, 1507-1514.	1.6	44

#	Article	IF	CITATIONS
55	X-ray polarization signatures of Compton scattering in magnetic cataclysmic variables. Monthly Notices of the Royal Astronomical Society, 2008, 386, 2167-2172.	1.6	12
56	Compton scattering of Fe Kα lines in magnetic cataclysmic variables. Monthly Notices of the Royal Astronomical Society, 0, 383, 962-970.	1.6	6