Carmen Ocal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1816451/publications.pdf

Version: 2024-02-01

150	5,092	81900	102487
papers	citations	h-index	g-index
154 all docs	154 docs citations	154 times ranked	6676 citing authors

#	Article	IF	CITATIONS
1	On-surface products from de-fluorination of C $<$ sub $>60<$ sub $>F<$ sub $>48<$ sub $>$ on Ag(111): C $<$ sub $>60<$ sub $>60<$ sub $>F<$ sub $>60<$ sub $>F<$ sub $>60<$ sub $>60<$ sub $>F<$ sub $>60<$ sub $>60<$ sub $>60<$ sub $>F<$ sub $>60<$ sub >60 sub $>60<$ sub $>60<$ sub >60 sub	2.8	4
2	Chemical Doping of the Organic Semiconductor C8â€BTBT 8 Using an Aqueous Iodine Solution for Device Mobility Enhancement. Advanced Materials Technologies, 2022, 7, .	5.8	11
3	From high quality packing to disordered nucleation or phase separation in donor/acceptor interfaces: ClAlPc-C ₆₀ on Au(111). Physical Chemistry Chemical Physics, 2021, 23, 14363-14371.	2.8	1
4	Design Dependence of the Interface Structure and Crystalline Order of Organic Semiconductor/Dopant Heterojunctions: Pentacene/C ₆₀ F ₄₈ . Journal of Physical Chemistry C, 2021, 125, 5363-5371.	3.1	2
5	Enhancing Longâ€Term Device Stability Using Thin Film Blends of Small Molecule Semiconductors and Insulating Polymers to Trap Surfaceâ€Induced Polymorphs. Advanced Functional Materials, 2020, 30, 2006115.	14.9	23
6	Surface specificity and mechanistic pathway of de-fluorination of C ₆₀ F ₄₈ on coinage metals. Nanoscale Advances, 2020, 2, 4529-4538.	4.6	3
7	Effect of the Organic Semiconductor Side Groups on the Structural and Electronic Properties of Their Interface with Dopants. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57578-57586.	8.0	7
8	Double Beneficial Role of Fluorinated Fullerene Dopants on Organic Thin-Film Transistors: Structural Stability and Improved Performance. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28416-28425.	8.0	13
9	Impact of Nanomorphology on Surface Doping of Organic Semiconductors: The Pentacene–C60F48 Interface. ACS Applied Materials & Interfaces, 2020, 12, 25444-25452.	8.0	4
10	Face dependent footprints of carpet-like graphene films grown on polycrystalline silicon carbide. Carbon, 2019, 153, 417-427.	10.3	3
11	Bipolar resistive switching on TiO2/Au by conducting Atomic Force Microscopy. Materials Today: Proceedings, 2019, 14, 100-103.	1.8	1
12	Energy alignment and recombination in perovskite solar cells: weighted influence on the open circuit voltage. Energy and Environmental Science, 2019, 12, 1309-1316.	30.8	106
13	Effect of the Molecular Polarizability of SAMs on the Work Function Modification of Gold: Closed― versus Openâ€6hell Donor–Acceptor SAMs. Advanced Materials Technologies, 2019, 4, 1800152.	5.8	13
14	Electron Accumulative Molecules. Journal of the American Chemical Society, 2018, 140, 2957-2970.	13.7	46
15	Solving the Long-Standing Controversy of Long-Chain Alkanethiols Surface Structure on Au(111). Journal of Physical Chemistry C, 2018, 122, 3893-3902.	3.1	14
16	Decoding the Vertical Phase Separation and Its Impact on C8-BTBT/PS Transistor Properties. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7296-7303.	8.0	61
17	Real Space Demonstration of Induced Crystalline 3D Nanostructuration of Organic Layers. Journal of Physical Chemistry B, 2018, 122, 633-639.	2.6	1
18	In-Situ Scrutiny of the Relationship between Polymorphic Phases and Properties of Self-Assembled Monolayers of a Biphenyl Based Thiol. Journal of Physical Chemistry B, 2018, 122, 657-665.	2.6	6

#	Article	IF	CITATIONS
19	Enantiopure Supramolecular Motifs of Self-Assembled Diamine-Based Chiral Molecules on Cu(100). Journal of Physical Chemistry C, 2018, 122, 24129-24136.	3.1	1
20	Chiral Organization and Charge Redistribution in Chloroaluminum Phthalocyanine on Au(111) Beyond the Monolayer. Journal of Physical Chemistry C, 2018, 122, 16033-16041.	3.1	9
21	Boosting Selfâ€Assembly Diversity in the Solidâ€State by Chiral/Nonâ€Chiral Zn ^{II} â€Porphyrin Crystallization. Chemistry - A European Journal, 2018, 24, 12950-12960.	3.3	7
22	Spray-coated contacts from an organic charge transfer complex solution for organic field-effect transistors. Organic Electronics, 2017, 48, 365-370.	2.6	9
23	A molecular-scale portrait of domain imaging in organic surfaces. Nanoscale, 2017, 9, 5589-5596.	5.6	12
24	Misfit Dislocation Guided Topographic and Conduction Patterning in Complex Oxide Epitaxial Thin Films. Advanced Materials Interfaces, 2016, 3, 1600106.	3.7	18
25	Coming across a novel copper oxide 2D framework during the oxidation of Cu(111). Physical Chemistry Chemical Physics, 2016, 18, 33303-33309.	2.8	8
26	Growth Instabilities as a Source of Surface Chemical Structuration in Functional Perovskite Thin Films. Crystal Growth and Design, 2016, 16, 5479-5486.	3.0	0
27	Micro and nano-patterning of single-crystal diamond by swift heavy ion irradiation. Diamond and Related Materials, 2016, 69, 1-7.	3.9	9
28	Microfluidic Pneumatic Cages: A Novel Approach for In-chip Crystal Trapping, Manipulation and Controlled Chemical Treatment. Journal of Visualized Experiments, 2016, , .	0.3	3
29	Prominent local transport in silicon carbide composites containing in-situ synthesized three-dimensional graphene networks. Journal of the European Ceramic Society, 2016, 36, 3073-3081.	5.7	10
30	Film Quality and Electronic Properties of a Surfaceâ€Anchored Metalâ€Organic Framework Revealed by using a Multiâ€technique Approach. ChemElectroChem, 2016, 3, 713-718.	3.4	22
31	xmlns:mml="http://www.w3.org/1998/Math/MathML">´ <mml:mrow><mml:mi mathvariant="normal">L<mml:msub><mml:mi mathvariant="normal">a<mml:mrow><mml:mn>0.7</mml:mn></mml:mrow></mml:mi </mml:msub><mml:mi mathvariant="normal">S<mml:msub><mml:mi< td=""><td>3.2</td><td>9</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow>	3.2	9
32	mathvariant="normal">rs/mmkmi> <mmkmrow> <mmkmr> 0.3 </mmkmr></mmkmrow> <mmkmi> Normal Intramolecular Force Contrast and Dynamic Current-Distance Measurements at Room Temperature. Physical Review Letters, 2015, 115, 066101.</mmkmi>	/n7.8	ni> <mml:ms 25</mml:ms
33	Structure formation in diindenoperylene thin films on copper(111). Physical Chemistry Chemical Physics, 2015, 17, 8776-8783.	2.8	10
34	Giant reversible nanoscale piezoresistance at room temperature in $Sr2IrO4thin films. Nanoscale, 2015, 7, 3453-3459.$	5.6	24
35	Bottom-up on-crystal in-chip formation of a conducting salt and a view of its restructuring: from organic insulator to conducting "switch―through microfluidic manipulation. Chemical Science, 2015, 6, 3471-3477.	7.4	2
36	Threshold-Voltage Shifts in Organic Transistors Due to Self-Assembled Monolayers at the Dielectric: Evidence for Electronic Coupling and Dipolar Effects. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22775-22785.	8.0	87

#	Article	IF	Citations
37	Instability and Surface Potential Modulation of Self-Patterned (001)SrTiO ₃ Surfaces. Chemistry of Materials, 2015, 27, 6198-6204.	6.7	13
38	Predicting supramolecular self-assembly on reconstructed metal surfaces. Nanoscale, 2014, 6, 7991-8001.	5.6	24
39	Macroscopic evidence of nanoscale resistive switching in La2/3Sr1/3MnO3micro-fabricated bridges. Journal of Physics Condensed Matter, 2014, 26, 395010.	1.8	8
40	Influence of the Relative Molecular Orientation on Interfacial Charge-Transfer Excitons at Donor/Acceptor Nanoscale Heterojunctions. Journal of Physical Chemistry C, 2014, 118, 14833-14839.	3.1	28
41	Tailored surfaces of perovskite oxide substrates for conducted growth of thin films. Chemical Society Reviews, 2014, 43, 2272-2285.	38.1	97
42	Heterogeneous nanotribological response of polymorphic self-assembled monolayers arising from domain and phase dependent friction. Physical Chemistry Chemical Physics, 2013, 15, 1302-1309.	2.8	11
43	Surface grafting of a dense and rigid coordination polymer based on tri-para-carboxy-polychlorotriphenylmethyl radical and copper acetate. Journal of Materials Chemistry C, 2013, 1, 793-800.	5.5	2
44	In situ processing of electrically conducting graphene/SiC nanocomposites. Journal of the European Ceramic Society, 2013, 33, 1665-1674.	5.7	105
45	PTM Radicals for Molecular-Based Electronic Devices. Advances in Atom and Single Molecule Machines, 2013, , 71-85.	0.0	0
46	Tailored interfaces for self-patterning organic thin-film transistors. Journal of Materials Chemistry, 2012, 22, 19047.	6.7	66
47	Nanoscale Laterally Modulated Properties of Oxide Ultrathin Films by Substrate Termination Replica through Layer-by-Layer Growth. Chemistry of Materials, 2012, 24, 4177-4184.	6.7	16
48	The memory effect of nanoscale memristors investigated by conducting scanning probe microscopy methods. Beilstein Journal of Nanotechnology, 2012, 3, 722-730.	2.8	8
49	Negative differential resistance (NDR) in similar molecules with distinct redox behaviour. Chemical Communications, 2011, 47, 4664.	4.1	30
50	Effect of Processing Parameters on Performance of Spray-Deposited Organic Thin-Film Transistors. Journal of Nanotechnology, 2011, 2011, 1-6.	3.4	14
51	Formation of pyramid-like nanostructures in MBE-grown Si films on Si(001). Applied Physics A: Materials Science and Processing, 2011, 102, 731-738.	2.3	3
52	Multi-scale electrical response of silicon nitride/multi-walled carbon nanotubes composites. Composites Science and Technology, 2011, 71, 60-66.	7.8	32
53	Electrical conductivity maps in graphene nanoplatelet/silicon nitride composites using conducting scanning force microscopy. Carbon, 2011, 49, 3873-3880.	10.3	79
54	Decoupling mechanisms and magnetic stability of nanostructured iron chains prepared by sputtering. Applied Physics Letters, 2011, 98, 102513.	3.3	4

#	Article	IF	Citations
55	Strong water-mediated friction asymmetry and surface dynamics of zwitterionic solids at ambient conditions: L-alanine as a case study. Journal of Chemical Physics, 2011, 134, 124705.	3.0	8
56	Conducted growth of SrRuO3 nanodot arrays on self-ordered La0.18Sr0.82Al0.59Ta0.41O3(001) surfaces. Applied Physics Letters, 2011, 99, 051914.	3.3	11
57	Study of nanoconductive and magnetic properties of nanostructured iron films prepared by sputtering at very low temperatures. Journal of Nanoparticle Research, 2010, 12, 1117-1127.	1.9	10
58	Contrast inversion in non-contact Dynamic Scanning Force Microscopy: What is high and what is low?. Ultramicroscopy, 2010, 110, 789-800.	1.9	22
59	Tuning the Supramolecular Chirality of One- and Two-Dimensional Aggregates with the Number of Stereogenic Centers in the Component Porphyrins. Journal of the American Chemical Society, 2010, 132, 9350-9362.	13.7	98
60	Reversible Resistive Switching and Multilevel Recording in La0.7Sr0.3MnO3Thin Films for Low Cost Nonvolatile Memories. Nano Letters, 2010, 10, 3828-3835.	9.1	121
61	Tuning the local frictional and electrostatic responses of nanostructured SrTiO3â€"surfaces by self-assembled molecular monolayers. Physical Chemistry Chemical Physics, 2010, 12, 4452.	2.8	22
62	Layerâ€Byâ€Layer Electropeeling of Organic Conducting Material Imaged In Real Time. Small, 2009, 5, 214-220.	10.0	8
63	Absence of self-heated bistable resistivity in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>La</mml:mtext></mml:mrow><mml:mrow> up to high current densities. Physical Review B. 2009. 80</mml:mrow></mml:msub></mml:mrow></mml:math>	3.2 <111ml:mn:	8.7
64	Atomically flat SrO-terminated SrTiO3(001) substrate. Applied Physics Letters, 2009, 95, .	3.3	87
65	Dramatic Influence of the Electronic Structure on the Conductivity through Open―and Closedâ€5hell Molecules. Advanced Materials, 2009, 21, 1177-1181.	21.0	45
66	Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nature Materials, 2009, 8, 481-484.	27.5	500
67	Pyramid-like nanostructures created by Si homoepitaxy on Si(001). Materials Science in Semiconductor Processing, 2009, 12, 52-56.	4.0	4
68	Exploring the Tilt-Angle Dependence of Electron Tunneling across Molecular Junctions of Self-Assembled Alkanethiols. ACS Nano, 2009, 3, 2073-2080.	14.6	53
69	Self-Assembly of SrTiO3(001) Chemical-Terminations: A Route for Oxide-Nanostructure Fabrication by Selective Growth. Chemistry of Materials, 2009, 21, 2494-2498.	6.7	49
70	Load-Free Determination of Film Structure Dependent Tunneling Decay Factors in Molecular Junctions. Journal of Physical Chemistry C, 2009, 113, 21903-21910.	3.1	3
71	Nanomechanical properties of surface-modified titanium alloys for biomedical applications. Acta Biomaterialia, 2008, 4, 1545-1552.	8.3	25
72	Grafting of Monocarboxylic Substituted Polychlorotriphenylmethyl Radicals onto a COOH-Functionalized Self-Assembled Monolayer through Copper (II) Metal Ions. Langmuir, 2008, 24, 6640-6648.	3.5	54

#	Article	IF	Citations
73	The controlled growth of oriented metal–organic frameworks on functionalized surfaces as followed by scanning force microscopy. Physical Chemistry Chemical Physics, 2008, 10, 7257.	2.8	130
74	Scanning force microscopy three-dimensional modes applied to conductivity measurements through linear-chain organic SAMs. Nanotechnology, 2007, 18, 125505.	2.6	21
75	Deciphering Structural Domains of Alkanethiol Self-Assembled Configurations by Friction Force Microscopy. Journal of Physical Chemistry A, 2007, 111, 12721-12726.	2.5	10
76	Surface elastic properties of Ti alloys modified for medical implants: A force spectroscopy study. Acta Biomaterialia, 2007, 3, 113-119.	8.3	28
77	Twin coarsening in CdTe(111) films grown on GaAs(100). Acta Materialia, 2006, 54, 4285-4291.	7.9	14
78	Surface microstructure of the oxide protective layers grown on vanadium-free Ti alloys for use in biomedical applications. Surface Science, 2006, 600, 3780-3784.	1.9	13
79	MBE fabrication of self-assembled Si and metal nanostructures on Si surfaces. Surface Science, 2006, 600, 3956-3963.	1.9	8
80	Real time scanning force microscopy observation of a structural phase transition in self-assembled alkanethiols. Journal of Chemical Physics, 2006, 124, 206102.	3.0	10
81	Quantitative electrostatic force microscopy on heterogeneous nanoscale samples. Applied Physics Letters, 2005, 87, 154106.	3.3	27
82	Faceting and structural anisotropy of nanopatterned CdO(110) layers. Journal of Applied Physics, 2005, 98, 034311.	2.5	3
83	Evaluation of Insulin-like Growth Factor (IGF)-I and IGF Binding Protein-3 Generation Test in Short Stature. Journal of Pediatric Endocrinology and Metabolism, 2005, 18, 443-52.	0.9	3
84	Chain-Length Dependence of Metastable Striped Structures of Alkanethiols on Au(111). Langmuir, 2005, 21, 8270-8277.	3.5	23
85	Microstructural Studies on the Lowâ€√emperature Crystallization Process of Strontium Bismuth Tantalate Thin Films. Journal of the American Ceramic Society, 2004, 87, 138-143.	3.8	5
86	Morphology of ZnO grown by MOCVD on sapphire substrates. Journal of Crystal Growth, 2004, 264, 70-78.	1.5	39
87	overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.5	36
88	New Insights in the c($4\tilde{A}$ –2) Reconstruction of Hexadecanethiol on Au(111) Revealed by Grazing Incidence X-ray Diffraction. Langmuir, 2004, 20, 9396-9402.	3.5	57
89	The Role of Intermolecular and Moleculeâ^'Substrate Interactions in the Stability of Alkanethiol Nonsaturated Phases on Au(111). Journal of the American Chemical Society, 2004, 126, 385-395.	13.7	72
90	Growth atomic mechanisms of pulsed laser deposited La modified- \$mathsf{PbTiO_3}\$ perovskites. European Physical Journal B, 2003, 35, 49-55.	1.5	15

#	Article	IF	CITATIONS
91	Influence of twinned structure on the morphology of CdTe(111) layers grown by MOCVD on GaAs(100) substrates. Journal of Crystal Growth, 2003, 257, 60-68.	1.5	16
92	Observation of a spin-polarized current through single atom quantum point contacts. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 264-265.	2.7	3
93	Spontaneously Polarized Sr[sub 1â^x]Bi[sub 2+y]Ta[sub 2]O[sub 9] Thin Films Prepared by Metallorganic Decomposition. Journal of the Electrochemical Society, 2002, 149, F4.	2.9	3
94	Ferroelectric Domain Structure and Local Piezoelectric Properties of La-Modified PbTiO 3 Thin Films Prepared by Pulsed Laser Deposition. Ferroelectrics, 2002, 269, 27-32.	0.6	2
95	Prion Protein Interaction with Glycosaminoglycan Occurs with the Formation of Oligomeric Complexes Stabilized by Cu(II) Bridges. Journal of Molecular Biology, 2002, 319, 527-540.	4.2	78
96	Microstructural characterization of iron thin films prepared by sputtering at very low temperatures. Vacuum, 2002, 67, 583-588.	3.5	4
97	Synthesis and structure of ordered stoichiometric Pt3Mn-based surface alloys. Surface Science, 2001, 482-485, 1303-1307.	1.9	8
98	A comparative AFM study of the structural and frictional properties of mixed and single component films of alkanethiols on Au(111). Surface Science, 2001, 482-485, 1216-1221.	1.9	36
99	Magnetic behavior of oxidized iron thin films prepared by sputtering at very low temperatures. Surface Science, 2001, 482-485, 1095-1100.	1.9	17
100	Structure and stability of tilted-chain phases of alkanethiols on Au(111). Journal of Chemical Physics, 2001, 114, 4210-4214.	3.0	60
101	Composition-related effects of microstructure on the ferroelectric behavior of SBT thin films. Applied Surface Science, 2001, 175-176, 759-763.	6.1	9
102	Atomic Scale Origin of Adhesion and Friction. , 2001, , 41-52.		5
103	Anomalous magnetic behavior of iron thin films prepared by DC sputtering at very low temperatures. Scripta Materialia, 2000, 43, 919-923.	5.2	4
104	Molecular packing changes of alkanethiols monolayers on Au(111) under applied pressure. Journal of Chemical Physics, 2000, 113, 2413-2418.	3.0	88
105	Evolution of the structure and mechanical stability of self-assembled alkanethiol islands on Au(111) due to diffusion and ripening. Journal of Chemical Physics, 1999, 111, 9797-9802.	3.0	88
106	Surface-layered ordered alloy(Pt/Pt3Mn)on Pt(111). Physical Review B, 1997, 56, 12139-12142.	3.2	30
107	Surface and bulk reconstruction of Pt(111) 1 $ ilde{A}$ — 1. Surface Science, 1997, 377-379, 18-22.	1.9	20
108	The structure of Co films on Cu(111) up to 15 ML. Surface Science, 1996, 352-354, 46-49.	1.9	31

#	Article	IF	Citations
109	Crystallography and morphology of the early stages of the growth of by LEED and STM. Surface Science, 1996, 349, L139-L145.	1.9	27
110	Crystallography and morphology of the early stages of the growth of by LEED and STM. Surface Science, 1996, 349, L139-L145.	1.9	43
111	Fabrication of magnetic quantum wires by stepâ€flow growth of cobalt on copper surfaces. Applied Physics Letters, 1995, 66, 1006-1008.	3.3	87
112	The structural characterization of Co-Cu(100) superlattices by X-ray absorption spectroscopy. Journal of Physics Condensed Matter, 1994, 6, 4981-4990.	1.8	15
113	Solubility of carbon dioxide in aqueous solutions of sodium chloride: Experimental results and correlation. Journal of Solution Chemistry, 1994, 23, 431-448.	1.2	180
114	Creation and motion of vacancy islands on solid surfaces: A direct view. Solid State Communications, 1994, 89, 815-818.	1.9	40
115	Surface etching and enhanced diffusion during the early stages of the growth of Co on Cu(111). Surface Science, 1994, 307-309, 538-543.	1.9	72
116	The Growth of Cobalt/Copper Epitaxial Layers and its Relationship to the Oscillatory Magnetic Coupling., 1994,, 141-149.		0
117	Structural phase transition during heteroepitaxial growth of iron silicides on Si(111). Applied Surface Science, 1993, 70-71, 578-582.	6.1	8
118	Surface structure of ?-FeSi2(101) epitaxially grown on Si(111). Applied Physics A: Solids and Surfaces, 1993, 57, 477-482.	1.4	15
119	A structural characterization of the buffer layer for growth of magnetically coupled Co/Cu superlattices. Journal of Magnetism and Magnetic Materials, 1993, 121, 20-23.	2.3	1
120	Crystallography of epitaxial face centered tetragonal Co/Cu(100) by low energy electron diffraction. Journal of Magnetism and Magnetic Materials, 1993, 121, 65-68.	2.3	31
121	Initial stages of the growth of Fe on Si(111)7×7. Physical Review B, 1993, 47, 16048-16051.	3.2	84
122	Geometric and electronic structure of epitaxial iron silicides. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 929-933.	2.1	28
123	Scanning-tunneling-microscopy study of the growth of cobalt on Cu(111). Physical Review B, 1993, 47, 13043-13046.	3.2	237
124	On the Structural Quality of Co/Cu Trilayers and Superlattices: The Influence of the Template Layer. NATO ASI Series Series B: Physics, 1993, , 439-451.	0.2	0
125	Real-Space Imaging of the First Stages of FeSi ₂ Epitaxially Grown on Si(111): Nucleation and Atomic Structure. Europhysics Letters, 1992, 18, 595-600.	2.0	74
126	Surface morphology of semiconducting iron silicides grown on Si(111). Surface Science, 1992, 264, 45-54.	1.9	14

#	Article	IF	Citations
127	Growth of epitaxial iron disilicide on Si(100). Surface Science, 1992, 269-270, 1016-1021.	1.9	13
128	A new metastable epitaxial silicide: FeSi2/Si(111). Ultramicroscopy, 1992, 42-44, 845-850.	1.9	29
129	Neutron-diffraction study on the field dependent magnetic ordering in Co—Cu superlattices. Journal of Magnetism and Magnetic Materials, 1991, 93, 89-94.	2.3	7
130	Surface characterization of epitaxial, semiconducting, FeSi2grown on Si(100). Applied Physics Letters, 1991, 59, 99-101.	3.3	45
131	Tip-surface forces during imaging by scanning tunneling microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991, 9, 1347.	1.6	60
132	Scanning tunneling microscopy study of the structure of sulfur [2(3)1/2×2(3)1/2] R 30° overlayer on rhenium (0001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 297-301.	2.1	37
133	A structural study of the K adsorption site on a Si(001)2 $\tilde{A}-1$ surface: Dimer, caves or both. Surface Science, 1989, 211-212, 31-38.	1.9	33
134	Mono―and multiatomic steps with constant periodicity as observed by STM in vicinal Au(111) surfaces. Journal of Microscopy, 1988, 152, 697-701.	1.8	7
135	Surface extended-x-ray-absorption fine-structure study at the carbonKedge: The p4g(22)-C/Ni(100) system. Physical Review B, 1987, 35, 5900-5902.	3.2	86
136	Low temperature diffusion of Pt and Au atoms through thin TiO2 films on a Ti substrate. Surface Science, 1987, 191, 147-156.	1.9	43
137	A new CO adsorption state on thermally treated model catalysts. Surface Science, 1986, 178, 850-855.	1.9	15
138	Photoemission multiplet splitting in metallic glasses. Journal of Non-Crystalline Solids, 1986, 88, 162-166.	3.1	0
139	The strong metal–support interaction (SMSI) in Pt–TiO2 model catalysts. A new CO adsorption state on Pt–Ti atoms. Journal of Chemical Physics, 1986, 84, 6474-6478.	3.0	41
140	NEAR-EDGE X-RAY ABSORPTION FINE-STRUCTURE STUDIES OF RING MOLECULES ADSORBED ON SINGLE CRYSTAL SURFACES. Journal De Physique Colloque, 1986, 47, C8-491-C8-496.	0.2	26
141	Surface extended x-ray absorption fine-structure study of the $O(2\tilde{A}-1)/Cu(110)$ system: Missing-row reconstruction and anisotropy in the surface mean free path and in the surface Debye-Waller factor. Physical Review Letters, 1986, 57, 3273-3276.	7.8	121
142	Core level photoemission study of Au deposited on Pt(111) in the submonolayer range. Surface Science Letters, 1985, 160, L488-L492.	0.1	1
143	An ISS-XPS study on the oxidation of Al(111); identification of stoichiometric and reduced oxide surfaces. Surface Science, 1985, 157, 233-243.	1.9	49
144	Diffusion of metallic atoms through thin oxides in metallic substrates. Surface Science, 1985, 162, 558-562.	1.9	4

#	Article	lF	CITATIONS
145	Core level photoemission study of Au deposited on Pt(111) in the submonolayer range. Surface Science, 1985, 160, L488-L492.	1.9	9
146	Cabrera-Mott mechanism for oxidation of metals explains diffusion of metallic atoms through thin defective oxide layers. Surface Science, 1985, 163, 335-356.	1.9	48
147	Intensities and field enhancement of light scattered from periodic gratings: study OF Ag, Au and Cu surfaces. Surface Science, 1984, 143, 342-358.	1.9	20
148	The oxidation of submonolayer deposits of Pb on $Cu(111)$; differences between the oxide at the Pb island edges and the stoichiometric surface oxide. Surface Science, 1984, 136, 571-581.	1.9	21
149	Model Theory for Scanning Tunneling Microscopy: Application to Au(110) (1×2). Physical Review Letters, 1983, 50, 2002-2005.	7.8	150
150	Bound states of the He-GaAs(110) attractive interaction potential. Physical Review B, 1981, 24, 1140-1143.	3.2	0