Jamal Ezzahar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1816340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. Hydrology and Earth System Sciences, 2014, 18, 1165-1188.	1.9	84
2	Evaluation of Backscattering Models and Support Vector Machine for the Retrieval of Bare Soil Moisture from Sentinel-1 Data. Remote Sensing, 2020, 12, 72.	1.8	69
3	Partitioning evapotranspiration of a drip-irrigated wheat crop: Inter-comparing eddy covariance-, sap flow-, lysimeter- and FAO-based methods. Agricultural and Forest Meteorology, 2019, 265, 310-326.	1.9	59
4	Monitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas. Remote Sensing of Environment, 2020, 251, 112050.	4.6	52
5	Impact of Sowing Date on Yield and Water Use Efficiency of Wheat Analyzed through Spatial Modeling and FORMOSAT-2 Images. Remote Sensing, 2015, 7, 5951-5979.	1.8	50
6	Calibrating an evapotranspiration model using radiometric surface temperature, vegetation cover fraction and near-surface soil moisture data. Agricultural and Forest Meteorology, 2018, 256-257, 104-115.	1.9	42
7	Modified Penman–Monteith equation for monitoring evapotranspiration of wheat crop: Relationship between the surface resistance and remotely sensed stress index. Biosystems Engineering, 2017, 164, 68-84.	1.9	35
8	An evapotranspiration model self-calibrated from remotely sensed surface soil moisture, land surface temperature and vegetation cover fraction: application to disaggregated SMOS and MODIS data. Hydrology and Earth System Sciences, 2020, 24, 1781-1803.	1.9	22
9	A phenomenological model of soil evaporative efficiency using surface soil moisture and temperature data. Agricultural and Forest Meteorology, 2018, 256-257, 501-515.	1.9	21
10	Irrigation Amounts and Timing Retrieval through Data Assimilation of Surface Soil Moisture into the FAO-56 Approach in the South Mediterranean Region. Remote Sensing, 2021, 13, 2667.	1.8	12
11	On the Utility of High-Resolution Soil Moisture Data for Better Constraining Thermal-Based Energy Balance over Three Semi-Arid Agricultural Areas. Remote Sensing, 2021, 13, 727.	1.8	10
12	Evapotranspiration partition using the multiple energy balance version of the ISBA-A-g _s land surface model over two irrigated crops in a semi-arid Mediterranean region (Marrakech, Morocco). Hydrology and Earth System Sciences, 2020, 24, 3789-3814.	1.9	10
13	Integrating thermal stress indexes within Shuttleworth–Wallace model for evapotranspiration mapping over a complex surface. Irrigation Science, 2021, 39, 45-61.	1.3	8
14	C-band radar data and in situ measurements for the monitoring of wheat crops in a semi-arid area (center of Morocco). Earth System Science Data, 2021, 13, 3707-3731.	3.7	8
15	Combining a Two Source Energy Balance Model Driven by MODIS and MSC-SEVIRI Products with an Aggregation Approach to Estimate Turbulent Fluxes over Sparse and Heterogeneous Vegetation in Sahel Region (Niger). Remote Sensing, 2018, 10, 974.	1.8	7
16	Performance Evaluation of the WOFOST Model for Estimating Evapotranspiration, Soil Water Content, Grain Yield and Total Above-Ground Biomass of Winter Wheat in Tensift Al Haouz (Morocco): Application to Yield Gap Estimation. Agronomy, 2021, 11, 2480.	1.3	7
17	Multi-Scale Evaluation of the TSEB Model over a Complex Agricultural Landscape in Morocco. Remote Sensing, 2020, 12, 1181.	1.8	6
18	A Simple Light-Use-Efficiency Model to Estimate Wheat Yield in the Semi-Arid Areas. Agronomy, 2020, 10, 1524.	1.3	5

#	Article	IF	CITATIONS
19	Including Radar Soil Moisture into Two-Source Energy Balance Model for Improving Turbulent Fluxes Estimates. , 2021, , .		1
20	A New Competitive Neural Architecture for Object Classification. Applied Sciences (Switzerland), 2022, 12, 4724.	1.3	0