
Justin W Kenney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1816277/publications.pdf Version: 2024-02-01

LISTIN W KENNEY

#	Article	IF	CITATIONS
1	Modulation of Hippocampus-Dependent Learning and Synaptic Plasticity by Nicotine. Molecular Neurobiology, 2008, 38, 101-121.	4.0	222
2	Chemogenetic Interrogation of a Brain-wide Fear Memory Network in Mice. Neuron, 2017, 94, 363-374.e4.	8.1	211
3	Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory. Journal of Neuroscience, 2017, 37, 4103-4116.	3.6	170
4	Eukaryotic elongation factor 2 kinase, an unusual enzyme with multiple roles. Advances in Biological Regulation, 2014, 55, 15-27.	2.3	149
5	Two-Stage Translational Control of Dentate Gyrus LTP Consolidation Is Mediated by Sustained BDNF-TrkB Signaling to MNK. Cell Reports, 2014, 9, 1430-1445.	6.4	122
6	Hippocampal α4β2 Nicotinic Acetylcholine Receptor Involvement in the Enhancing Effect of Acute Nicotine on Contextual Fear Conditioning. Journal of Neuroscience, 2007, 27, 10870-10877.	3.6	100
7	Recovery of "Lost―Infant Memories in Mice. Current Biology, 2018, 28, 2283-2290.e3.	3.9	93
8	Consolidation and translation regulation: Figure 1 Learning and Memory, 2012, 19, 410-422.	1.3	77
9	BDNF Stimulation of Protein Synthesis in Cortical Neurons Requires the MAP Kinase-Interacting Kinase MNK1. Journal of Neuroscience, 2015, 35, 972-984.	3.6	76
10	<i>Gadd45b</i> knockout mice exhibit selective deficits in hippocampus-dependent long-term memory. Learning and Memory, 2012, 19, 319-324.	1.3	74
11	β2 subunit containing acetylcholine receptors mediate nicotine withdrawal deficits in the acquisition of contextual fear conditioning. Neurobiology of Learning and Memory, 2008, 89, 106-113.	1.9	64
12	The effects of acute, chronic, and withdrawal from chronic nicotine on novel and spatial object recognition in male C57BL/6J mice. Psychopharmacology, 2011, 217, 353-365.	3.1	62
13	Elongation Factor 2 Kinase Is Regulated by Proline Hydroxylation and Protects Cells during Hypoxia. Molecular and Cellular Biology, 2015, 35, 1788-1804.	2.3	62
14	Impaired associative taste learning and abnormal brain activation in kinase-defective eEF2K mice. Learning and Memory, 2012, 19, 116-125.	1.3	61
15	Strain-dependent Effects of Acute, Chronic, and Withdrawal from Chronic Nicotine on Fear Conditioning. Behavior Genetics, 2012, 42, 133-150.	2.1	58
16	Nicotinic receptors in the dorsal and ventral hippocampus differentially modulate contextual fear conditioning. Hippocampus, 2012, 22, 1681-1690.	1.9	56
17	The duration of nicotine withdrawal-associated deficits in contextual fear conditioning parallels changes in hippocampal high affinity nicotinic acetylcholine receptor upregulation. Neuropharmacology, 2012, 62, 2118-2125.	4.1	55
18	Nicotine enhances context learning but not context-shock associative learning Behavioral Neuroscience, 2008, 122, 1158-1165.	1.2	46

JUSTIN W KENNEY

#	Article	IF	CITATIONS
19	Contextual fear conditioning in zebrafish. Learning and Memory, 2017, 24, 516-523.	1.3	44
20	Eukaryotic elongation factor 2 kinase regulates theÂsynthesis of microtubuleâ€related proteins in neurons. Journal of Neurochemistry, 2016, 136, 276-284.	3.9	42
21	Involvement of Hippocampal Jun-N Terminal Kinase Pathway in the Enhancement of Learning and Memory by Nicotine. Neuropsychopharmacology, 2010, 35, 483-492.	5.4	40
22	Biological perspectives on the effects of early psychosocial experience. Developmental Review, 2009, 29, 96-119.	4.7	36
23	Dynamics of Elongation Factor 2 Kinase Regulation in Cortical Neurons in Response to Synaptic Activity. Journal of Neuroscience, 2015, 35, 3034-3047.	3.6	33
24	Neural correlates of ingroup bias for prosociality in rats. ELife, 2021, 10, .	6.0	33
25	Eukaryotic elongation factor 2 kinase upregulates the expression of proteins implicated in cell migration and cancer cell metastasis. International Journal of Cancer, 2018, 142, 1865-1877.	5.1	32
26	Learning and Nicotine Interact to Increase CREB Phosphorylation at the jnk1 Promoter in the Hippocampus. PLoS ONE, 2012, 7, e39939.	2.5	26
27	A 3D adult zebrafish brain atlas (AZBA) for the digital age. ELife, 2021, 10, .	6.0	22
28	Quantitative Non-canonical Amino Acid Tagging (QuaNCAT) Proteomics Identifies Distinct Patterns of Protein Synthesis Rapidly Induced by Hypertrophic Agents in Cardiomyocytes, Revealing New Aspects of Metabolic Remodeling. Molecular and Cellular Proteomics, 2016, 15, 3170-3189.	3.8	18
29	Proteomic and Metabolomic Analyses of Vanishing White Matter Mouse Astrocytes Reveal Deregulation of ER Functions. Frontiers in Cellular Neuroscience, 2017, 11, 411.	3.7	13
30	The enhancement of contextual fear conditioning by ABT-418. Behavioural Pharmacology, 2010, 21, 246-249.	1.7	12
31	Associative and nonassociative learning in adult zebrafish. , 2020, , 187-204.		11
32	Stronger learning recruits additional cell-signaling cascades: c-Jun-N-terminal kinase 1 (JNK1) is necessary for expression of stronger contextual fear conditioning. Neurobiology of Learning and Memory, 2015, 118, 162-166.	1.9	8
33	Thyroid receptor β involvement in the effects of acute nicotine onÂhippocampus-dependent memory. Neuropharmacology, 2015, 93, 155-163.	4.1	6
34	c-Jun-N-terminal kinase 1 is necessary for nicotine-induced enhancement of contextual fear conditioning. Neuroscience Letters, 2016, 627, 61-64.	2.1	3
35	Making connections. ELife, 2014, 3, .	6.0	1