List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1816191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vibrational Properties of CuO and Cu ₄ O ₃ from First-Principles Calculations, and Raman and Infrared Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 10232-10237.	3.1	417
2	Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Applied Surface Science, 2003, 210, 359-367.	6.1	224
3	xmins:mmi= http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	3.2	202
4	mathvariant="normal">u <mmtm>4 Reactive magnetron sputtering of copper, silver, and gold. Thin Solid Films, 2005, 478, 196-205.</mmtm>	1.8	172
5	Structure and properties of copper nitride films formed by reactive magnetron sputtering. Vacuum, 2002, 66, 59-64.	3.5	117
6	Stability of reactively sputtered silver oxide films. Surface and Coatings Technology, 2005, 200, 276-279.	4.8	102
7	VN thin films as electrode materials for electrochemical capacitors. Electrochimica Acta, 2014, 141, 203-211.	5.2	98
8	Asymmetric electrochemical capacitor microdevice designed with vanadium nitride and nickel oxide thin film electrodes. Electrochemistry Communications, 2013, 28, 104-106.	4.7	93
9	Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films. Journal of Applied Physics, 2005, 98, 023715.	2.5	87
10	Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices. Scripta Materialia, 2013, 68, 659-662.	5.2	85
11	Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing. Journal of Applied Physics, 2014, 115, .	2.5	85
12	Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics. Surface and Coatings Technology, 2003, 174-175, 338-344.	4.8	84
13	Influence of silicon addition on the oxidation resistance of CrN coatings. Surface and Coatings Technology, 2005, 200, 264-268.	4.8	63
14	Structural changes in Zr–Si–N films vs. their silicon content. Surface and Coatings Technology, 2004, 180-181, 352-356.	4.8	62
15	Influence of substrate temperature on titanium oxynitride thin films prepared by reactive sputtering. Applied Surface Science, 2004, 225, 29-38.	6.1	53
16	Oxidation resistance improvement of arc-evaporated TiN hard coatings by silicon addition. Surface and Coatings Technology, 2006, 201, 4158-4162.	4.8	50
17	Addition of silver in copper nitride films deposited by reactive magnetron sputtering. Scripta Materialia, 2008, 58, 568-570.	5.2	50
18	Semi-Transparent p-Cu ₂ O/n-ZnO Nanoscale-Film Heterojunctions for Photodetection and Photovoltaic Applications. ACS Applied Nano Materials, 2019, 2, 4358-4366.	5.0	49

#	Article	IF	CITATIONS
19	Influence of the nanostructuration of PVD hard TiN-based films on the durability of coated steel. Surface and Coatings Technology, 2008, 202, 2268-2277.	4.8	47
20	Property change in multifunctional TiCxOy thin films: Effect of the O/Ti ratio. Thin Solid Films, 2006, 515, 866-871.	1.8	45
21	Substrate temperature influenced structural, electrical and optical properties of dc magnetron sputtered MoO3 films. Applied Surface Science, 2010, 256, 3133-3137.	6.1	44
22	Hard Cr–Al–Si–B–(N) coatings deposited by reactive and non-reactive magnetron sputtering of CrAlSiB target. Applied Surface Science, 2014, 314, 104-111.	6.1	44
23	Tuning the structure and preferred orientation in reactively sputtered copper oxide thin films. Applied Surface Science, 2015, 335, 85-91.	6.1	44
24	Infrared Plasmonics with Conductive Ternary Nitrides. ACS Applied Materials & Interfaces, 2017, 9, 10825-10834.	8.0	42
25	Effect of nitrogen partial pressure on the structure, physical and mechanical properties of CrB2 and Cr–B–N films. Thin Solid Films, 2009, 517, 2675-2680.	1.8	40
26	Characterization of Silver Oxide Films Formed by Reactive RF Sputtering at Different Substrate Temperatures. , 2014, 2014, 1-7.		37
27	Reactively sputtered Ti–B–N nanocomposite films: correlation between structure and optical properties. Thin Solid Films, 2002, 408, 26-32.	1.8	36
28	Properties and air annealing of paramelaconite thin films. Materials Letters, 2003, 57, 3676-3680.	2.6	35
29	Investigation of Niobium oxynitride thin films deposited by reactive magnetron sputtering. Surface and Coatings Technology, 2006, 201, 4152-4157.	4.8	35
30	Influence of the nanoscale structural features on the properties and electronic structure of Al-doped ZnO thin films: An X-ray absorption study. Solar Energy Materials and Solar Cells, 2011, 95, 2341-2346.	6.2	35
31	On the deactivation of the dopant and electronic structure in reactively sputtered transparent Al-doped ZnO thin films. Journal Physics D: Applied Physics, 2010, 43, 132003.	2.8	34
32	Chemical environment and functional properties of highly crystalline ZnSnN2 thin films deposited by reactive sputtering at room temperature. Solar Energy Materials and Solar Cells, 2018, 182, 30-36.	6.2	34
33	Study of the structural changes induced by air oxidation in Ti–Si–N hard coatings. Surface and Coatings Technology, 2008, 202, 2413-2417.	4.8	33
34	Chemistry, phase formation, and catalytic activity of thin palladium-containing oxide films synthesized by plasma-assisted physical vapor deposition. Surface and Coatings Technology, 2011, 205, S171-S177.	4.8	33
35	Innovative Smart Selective Coating to Avoid Overheating in Highly Efficient Thermal Solar Collectors. Energy Procedia, 2016, 91, 84-93.	1.8	31
36	Stabilisation of tetragonal zirconia in oxidised Zrî—,Siî—,N nanocomposite coatings. Applied Surface Science, 2004, 229, 132-139.	6.1	30

#	Article	IF	CITATIONS
37	Influence of the current applied to the silver target on the structure and the properties of Ag–Cu–O films deposited by reactive cosputtering. Applied Surface Science, 2007, 253, 7522-7526.	6.1	30
38	Controlling the preferred orientation in sputter-deposited Cu2O thin films: Influence of the initial growth stage and homoepitaxial growth mechanism. Acta Materialia, 2014, 76, 207-212.	7.9	30
39	Comparative Study of Sliding, Scratching, and Impact-Loading Behavior of Hard CrB2 and Cr–B–N Films. Tribology Letters, 2016, 63, 1.	2.6	29
40	Properties of iron boride films prepared by magnetron sputtering. Surface and Coatings Technology, 2003, 174-175, 331-337.	4.8	27
41	Experimental and theoretical contributions to the determination of optical properties of synthetic paramelaconite. Journal of Solid State Chemistry, 2007, 180, 968-973.	2.9	27
42	Effect of the oxygen flow rate on the structure and the properties of Ag–Cu–O sputtered films deposited using a Ag/Cu target with eutectic composition. Applied Surface Science, 2008, 254, 6590-6594.	6.1	26
43	Structural, surface morphological, and optical properties of nanocrystalline Cu ₂ O and CuO films formed by RF magnetron sputtering: Oxygen partial pressure effect. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1279-1286.	1.8	26
44	Tunable Localized Surface Plasmon Resonance and Broadband Visible Photoresponse of Cu Nanoparticles/ZnO Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 40958-40965.	8.0	26
45	Evolution of the structural, morphological, optical and electrical properties of reactively RF-sputtered cobalt oxide thin films with oxygen pressure. Vacuum, 2019, 159, 346-352.	3.5	26
46	Influence of oxygen flow rate on the structural and mechanical properties of reactively magnetron sputter-deposited Zr–B–O coatings. Thin Solid Films, 1999, 347, 78-84.	1.8	25
47	Atypical Properties of FIB-Patterned RuO _{<i>x</i>} Nanosupercapacitors. ACS Energy Letters, 2017, 2, 1734-1739.	17.4	25
48	Structure and tribological properties of reactively sputtered Zr–Si–N films. Thin Solid Films, 2006, 496, 445-449.	1.8	24
49	Development of dark Ti(C,O,N) coatings prepared by reactive sputtering. Surface and Coatings Technology, 2008, 203, 804-807.	4.8	24
50	Growth, interfacial microstructure and optical properties of NiO thin films with various types of texture. Acta Materialia, 2019, 164, 648-653.	7.9	24
51	Oxidation resistance of decorative (Ti,Mg)N coatings deposited by hybrid cathodic arc evaporation-magnetron sputtering process. Surface and Coatings Technology, 2011, 205, 4547-4553.	4.8	23
52	Reactive sputtering: A method to modify the metallic ratio in the novel silver–copper oxides. Applied Surface Science, 2006, 253, 1484-1488.	6.1	22
53	Towards delafossite structure of Cu–Cr–O thin films deposited by reactive magnetron sputtering: Influence of substrate temperature onÂoptoelectronics properties. Vacuum, 2015, 114, 101-107.	3.5	22
54	Wurtzite CoO: a direct band gap oxide suitable for a photovoltaic absorber. Chemical Communications, 2018, 54, 13949-13952.	4.1	21

#	Article	IF	CITATIONS
55	Structural and electrical properties of sputtered titanium boronitride films. Surface and Coatings Technology, 2001, 142-144, 906-910.	4.8	20
56	Structural, optical and electrical properties of reactively sputtered iron oxynitride films. Journal Physics D: Applied Physics, 2006, 39, 1894-1898.	2.8	20
57	Structure and chemical bonds in reactively sputtered black Ti–C–N–O thin films. Thin Solid Films, 2011, 520, 144-151.	1.8	20
58	Self supported nickel antimonides based electrodes for Li ion battery. Solid State Ionics, 2011, 192, 298-303.	2.7	19
59	Role of Cu ⁺ on ZnS:Cu p-type semiconductor films grown by sputtering: influence of substitutional Cu in the structural, optical and electronic properties. RSC Advances, 2016, 6, 43480-43488.	3.6	19
60	Effect of germanium addition on the properties of reactively sputtered ZrN films. Thin Solid Films, 2005, 492, 180-186.	1.8	18
61	Chemical environment of iron atoms in iron oxynitride films synthesized by reactive magnetron sputtering. Scripta Materialia, 2007, 56, 153-156.	5.2	18
62	Properties of nanocrystalline and nanocomposite WxZr1â^'x thin films deposited by co-sputtering. Intermetallics, 2009, 17, 421-426.	3.9	18
63	Electrochemical reaction of lithium with ruthenium nitride thin films prepared by pulsed-DC magnetron sputtering. Electrochimica Acta, 2015, 164, 12-20.	5.2	18
64	Nitrogen chemical state in N-doped Cu2O thin films. Applied Physics Letters, 2017, 110, .	3.3	18
65	Nickel doped copper oxide thin films prepared by radiofrequency reactive sputtering: study of the impact of nickel content on the structural, optical and electrical properties. Spectroscopy Letters, 2021, 54, 487-494.	1.0	18
66	Effect of nitrogen vacancies on the growth, dislocation structure, and decomposition of single crystal epitaxial (Ti1-xAlx)Ny thin films. Acta Materialia, 2021, 203, 116509.	7.9	18
67	ZrCuAg Thin-Film Metallic Glasses: Toward Biostatic Durable Advanced Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 17062-17074.	8.0	18
68	Low temperature ZrB2 remote plasma enhanced chemical vapor deposition. Thin Solid Films, 2000, 359, 68-76.	1.8	17
69	Reactive gas pulsing process: A method to extend the composition range in sputtered iron oxynitride films. Surface and Coatings Technology, 2008, 202, 4825-4829.	4.8	17
70	Enhanced thermal stability and mechanical properties of nitrogen deficient titanium aluminum nitride (Ti0.54Al0.46Ny) thin films by tuning the applied negative bias voltage. Journal of Applied Physics, 2017, 122, .	2.5	17
71	Local Structure and Point-Defect-Dependent Area-Selective Atomic Layer Deposition Approach for Facile Synthesis of p-Cu ₂ 0/n-ZnO Segmented Nanojunctions. ACS Applied Materials & Interfaces, 2018, 10, 37671-37678.	8.0	17
72	Magnetron sputtering of NASICON (Na3Zr2Si2PO12) thin films. Surface and Coatings Technology, 2007, 201, 7060-7065.	4.8	16

#	Article	IF	CITATIONS
73	Preparation and characterization of nanocomposite of Co:CuO by radio-frequency sputtering for solar selective absorber application. Thin Solid Films, 2020, 709, 138199.	1.8	16
74	Use of silane for the deposition of hard and oxidation resistant Ti–Si–N coatings by a hybrid cathodic arc and chemical vapour process. Materials Letters, 2007, 61, 2506-2508.	2.6	15
75	Thermochromic effect in NdNiO3â^'Î thin films annealed in ambient air. Journal Physics D: Applied Physics, 2009, 42, 182006.	2.8	15
76	Structure–properties relationship in reactively sputtered Ag–Cu–O films. Journal Physics D: Applied Physics, 2009, 42, 025304.	2.8	15
77	Mechanisms of Oxidation of NdNiO _{3â^î} Thermochromic Thin Films Synthesized by a Two-Step Method in Soft Conditions. Journal of Physical Chemistry C, 2014, 118, 5908-5917.	3.1	15
78	Kinetics of boron atoms in Ar- flowing microwave discharges. Plasma Sources Science and Technology, 1998, 7, 54-60.	3.1	14
79	High hardness, low Young's modulus and low friction of nanocrystalline ZrW2 Laves phase and Zr1â^'xWx thin films. Journal of Physics and Chemistry of Solids, 2012, 73, 554-558.	4.0	14
80	Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements. Journal of Applied Physics, 2016, 120, .	2.5	14
81	Localised corrosion attacks and oxide growth on copper in phosphate-buffered saline. Materials Characterization, 2019, 158, 109985.	4.4	14
82	Suppressing the carrier concentration of zinc tin nitride thin films by excess zinc content and low temperature growth. Applied Physics Letters, 2019, 115, .	3.3	14
83	Influence of the silicon concentration on the optical and electrical properties of reactively sputtered Zr–Si–N nanocomposite coatings. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 131, 36-39.	3.5	13
84	Cation size effect on the thermochromic properties of rare earth cobaltites <i>RE</i> CoO ₃ (<i>RE</i> : La, Nd, Sm). Journal of Applied Physics, 2013, 114, 113510.	2.5	13
85	Phenomenological study of iron and lanthanum magnetron co-sputtering using two reactive gases. Surface and Coatings Technology, 2016, 298, 39-44.	4.8	13
86	Characterisation of reactively sputtered Ti–B–N and Ti–B–O coatings. Surface and Coatings Technology, 2002, 151-152, 526-530.	4.8	12
87	Properties and electrochromic performances of reactively sputtered tungsten oxide films with water as reactive gas. Surface and Coatings Technology, 2005, 200, 232-235.	4.8	12
88	Effect of annealing temperature on the decomposition of reactively sputtered Ag2Cu2O3 films. Applied Surface Science, 2009, 255, 7700-7702.	6.1	12
89	Development of novel titanium nitride-based decorative coatings by calcium addition. Applied Surface Science, 2011, 257, 8525-8528.	6.1	12
90	Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates. Journal of Applied Physics, 2019, 125, .	2.5	12

#	Article	IF	CITATIONS
91	Binary copper oxides as photovoltaic absorbers: recent progress in materials and applications. Journal Physics D: Applied Physics, 2021, 54, 263002.	2.8	12
92	Amorphous Fe–B–N films deposited by reactive sputtering of a FeB target. Surface and Coatings Technology, 2004, 180-181, 44-48.	4.8	11
93	Substrate effect on the formation of ω-phase in sputtered zirconium films. Scripta Materialia, 2005, 53, 1031-1036.	5.2	11
94	Hard Cr-Al-Si-B-(N) coatings with oxidation resistance up to 1200°C. Glass Physics and Chemistry, 2011, 37, 411-417.	0.7	11
95	Comparative analysis of Cr-B coatings deposited by magnetron sputtering in DC and HIPIMS modes. Technical Physics Letters, 2014, 40, 614-617.	0.7	11
96	Inductive Effect of Nd for Ni ³⁺ Stabilization in NdNiO ₃ Synthesized by Reactive DC Cosputtering. Journal of Physical Chemistry C, 2017, 121, 21579-21590.	3.1	11
97	Controlling surface morphology by nanocrystalline/amorphous competitive self-phase separation in thin films: Thickness-modulated reflectance and interference phenomena. Acta Materialia, 2019, 181, 78-86.	7.9	11
98	The effect of nitrogen vacancies on initial wear in arc deposited (Ti0.52,Al0.48)Ny, (yâ€~<â€~1) coatings during machining. Surface and Coatings Technology, 2019, 358, 452-460.	4.8	11
99	Oxidation of sputter-deposited vanadium nitride as a new precursor to achieve thermochromic VO2 thin films. Solar Energy Materials and Solar Cells, 2020, 210, 110474.	6.2	11
100	Initial Morphology and Feedback Effects on Laser-Induced Periodic Nanostructuring of Thin-Film Metallic Glasses. Nanomaterials, 2021, 11, 1076.	4.1	11
101	Effects of deposition parameters on the microstructure and mechanical properties of Ti(C,N) produced by moderate temperature chemical vapor deposition (MT-CVD) on cemented carbides. Vacuum, 2022, 195, 110650.	3.5	11
102	Low temperature growth mechanism of zirconium diboride films synthesised in flowing microwave Ar–BCl3 post-discharges. Surface and Coatings Technology, 1999, 116-119, 1049-1054.	4.8	10
103	Bacterial adhesion on biomedical surfaces covered by micrometric silver Islands. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1521-1528.	4.0	10
104	Bacteria accumulate copper ions and inhibit oxide formation on copper surface during antibacterial efficiency test. Micron, 2019, 127, 102759.	2.2	10
105	Reactive sputtering of iron in Ar–N2 and Ar–O2 mixtures. Surface and Coatings Technology, 2005, 200, 431-434.	4.8	9
106	Oxidation and tribo-oxidation of nanocomposite Cr–Si–N coatings deposited by a hybrid arc/magnetron process. Surface and Coatings Technology, 2009, 204, 973-977.	4.8	9
107	Silver islands formed after air annealing of amorphous Ag–Cu–Mn–O sputtered films. Journal of Crystal Growth, 2009, 311, 349-354.	1.5	9
108	Deep oxidation of methane on particles derived from YSZ-supported Pd–Pt-(O) coatings synthesized by Pulsed Filtered Cathodic Arc. Catalysis Communications, 2009, 10, 1410-1413.	3.3	9

#	Article	IF	CITATIONS
109	Insights into the wear track evolution with sliding cycles of carbon-alloyed transition metal dichalcogenide coatings. Surface and Coatings Technology, 2020, 403, 126360.	4.8	9
110	Characterization of W–Ge–N coatings deposited by sputtering. Surface and Coatings Technology, 2006, 200, 6303-6307.	4.8	8
111	Structural properties of iron oxynitride films obtained by reactive magnetron sputtering. Journal of Physics Condensed Matter, 2007, 19, 226207.	1.8	8
112	Towards a thin films electrochromic device using NASICON electrolyte. Ionics, 2008, 14, 227-233.	2.4	8
113	Arc-evaporated nanocomposite zirconium-based boronitride coatings. Materials Chemistry and Physics, 2009, 114, 780-784.	4.0	8
114	Structure Control in Reactively Sputtered Ag/Cu/(Mn)/O Films. Plasma Processes and Polymers, 2009, 6, 393-400.	3.0	8
115	EPMA–EDS surface measurements of interdiffusion coefficients between miscible metals in thin films. Applied Surface Science, 2010, 256, 1855-1860.	6.1	8
116	Effect of deposition temperature on the physical properties of RF magnetron sputtered Ag–Cu–O films with various Cu to Ag ratios. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1655-1659.	1.8	8
117	The effect of oxygen partial pressure on physical properties of nanoâ€crystalline silver oxide thin films deposited by RF magnetron sputtering. Crystal Research and Technology, 2011, 46, 961-966.	1.3	8
118	Structural investigations of iron oxynitride multilayered films obtained by reactive gas pulsing process. Surface and Coatings Technology, 2015, 272, 158-164.	4.8	8
119	Local heteroepitaxial growth to promote the selective growth orientation, crystallization and interband transition of sputtered NiO thin films. CrystEngComm, 2016, 18, 1732-1739.	2.6	8
120	Room temperature fabrication of transparent p-NiO/n-ZnO junctions with tunable electrical properties. Vacuum, 2018, 149, 331-335.	3.5	8
121	Growth and high temperature decomposition of epitaxial metastable wurtzite (Ti1-x,Alx)N(0001) thin films. Thin Solid Films, 2019, 688, 137414.	1.8	8
122	Composition-driven transition from amorphous to crystalline films enables bottom-up design of functional surfaces. Applied Surface Science, 2021, 538, 148133.	6.1	8
123	High-Density Nanowells Formation in Ultrafast Laser-Irradiated Thin Film Metallic Glass. Nano-Micro Letters, 2022, 14, 103.	27.0	8
124	Crystallization of n-doped amorphous silicon PECVD films: comparison between SPC and RTA methods. Journal of Non-Crystalline Solids, 2000, 270, 91-96.	3.1	7
125	Influence of Bias Voltage on Copper Nitride Films Deposited by Reactive Sputtering. Surface Engineering, 2003, 19, 67-69.	2.2	7
126	Strontium-doped lanthanum manganite coatings crystallised after air annealing of amorphous co-sputtered films. Materials Chemistry and Physics, 2009, 116, 219-222.	4.0	7

#	Article	IF	CITATIONS
127	Thermochromic effect at room temperature of Sm0.5Ca0.5MnO3 thin films. Journal of Applied Physics, 2012, 111, 113517.	2.5	7
128	Room temperature self-assembled growth of vertically aligned columnar copper oxide nanocomposite thin films on unmatched substrates. Scientific Reports, 2017, 7, 11122.	3.3	7
129	Effect of Thermal Stresses Formed during Air Annealing of Amorphous Lanthanum Cuprate Thin Films Deposited on Silicon Substrate. Coatings, 2020, 10, 613.	2.6	7
130	Approaching Theoretical Band Gap of ZnSnN ₂ Films via Bias Magnetron Cosputtering at Room Temperature. ACS Applied Electronic Materials, 2021, 3, 3855-3866.	4.3	7
131	Elaboration of high-transparency ZnO thin films by ultrasonic spray pyrolysis with fast growth rate. Superlattices and Microstructures, 2021, 156, 106945.	3.1	7
132	Diagnostic of Ar–BCl3 microwave discharges by optical emission spectroscopy. Surface and Coatings Technology, 1997, 97, 749-754.	4.8	6
133	Efficient, Low Cost Synthesis of Sodium Platinum Bronze Na _{<i>x</i>} Pt ₃ O ₄ . Chemistry of Materials, 2012, 24, 2429-2432.	6.7	6
134	Tribocorrosion behavior of Ti–C–O–N nanostructured thin films (black) for decorative applications. Tribology International, 2013, 68, 1-10.	5.9	6
135	Blue emission and twin structure of p-type copper iodide thin films. Surfaces and Interfaces, 2021, 27, 101500.	3.0	6
136	Theoretical and experimental approaches for the determination of functional properties of MgSnN2 thin films. Solar Energy Materials and Solar Cells, 2022, 244, 111797.	6.2	6
137	Influence of the oxygen flow rate on the properties of reactively sputtered Ti–B–O films. Surface and Coatings Technology, 2003, 174-175, 1145-1150.	4.8	5
138	Magnetron sputtering of NASICON (Na3Zr2Si2PO12) thin films Part I: Limitations of the classical methods. Surface and Coatings Technology, 2007, 201, 7013-7017.	4.8	5
139	Influence of substrate temperature on the structural, dielectric and optical properties of RF magnetron sputtered Ta ₂ O ₅ films. IOP Conference Series: Materials Science and Engineering, 2010, 8, 012025.	0.6	5
140	Process-Parameter-Dependent Structural, Electrical, and Optical Properties of Reactive Magnetron Sputtered Ag-Cu-O Films. Journal of Nanotechnology, 2011, 2011, 1-8.	3.4	5
141	Structural and mechanical properties of Zr1â^'x Mox thin films: From the nano-crystalline to the amorphous state. Journal of Alloys and Compounds, 2017, 729, 137-143.	5.5	5
142	Growth kinetics and origin of residual stress of two-phase crystalline–amorphous nanostructured films. Journal of Applied Physics, 2021, 129, .	2.5	5
143	Surface morphology-optical properties relationship in thermochromic VO2 thin films obtained by air oxidation of vanadium nitride. Journal of Materiomics, 2021, 7, 657-664.	5.7	5
144	A revised interpretation of the mechanisms governing low friction tribolayer formation in alloyed-TMD self-lubricating coatings. Applied Surface Science, 2022, 571, 151302.	6.1	5

#	Article	IF	CITATIONS
145	Influence of the nucleation surface on the growth of epitaxial Al2O3 thermal CVD films deposited on cemented carbides. Materials and Design, 2022, 216, 110601.	7.0	5
146	Structural-electrical-optical properties relationship of sodium superionic conductor sputter-deposited coatings. Thin Solid Films, 2008, 516, 3387-3393.	1.8	4
147	Effect of the deposition process on the composition and structure of sputtered lanthanum cuprate films. Surface and Coatings Technology, 2011, 205, S254-S257.	4.8	4
148	Effect of substrate temperature on the structural, electrical and optical behaviour of reactively sputtered Ag–Cu–O films. Physica Scripta, 2011, 84, 045602.	2.5	4
149	Early-stage corrosion, ion release, and the antibacterial effect of copper and cuprous oxide in physiological buffers: Phosphate-buffered saline vs Na-4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid. Biointerphases, 2019, 14, 061004.	1.6	4
150	Optical and electrical properties of hard (Hf,Nb,Ti,V,Zr)Nx thin films. Vacuum, 2021, 193, 110517.	3.5	4
151	Structural characterisation of ZrB2/oxides nanocomposite films synthesised in flowing Arî—,BCl3 post-discharges. Applied Surface Science, 2001, 172, 285-294.	6.1	3
152	Thermal stability of oxygen vacancy stabilized zirconia (OVSZ) thin films. Surface and Coatings Technology, 2021, 409, 126880.	4.8	3
153	Tailor the antibacterial efficiency of copper alloys by oxidation: when to and when not to. Journal of Materials Science, 2022, 57, 3807-3821.	3.7	3
154	Electrical properties of zinc nitride and zinc tin nitride semiconductor thin films toward photovoltaic applications. High Temperature Materials and Processes, 2022, 41, 343-352.	1.4	3
155	Antibacterial properties of biomedical surfaces containing micrometric silver islands. Journal of Physics: Conference Series, 2010, 252, 012015.	0.4	2
156	Local Homoepitaxial Growth in Sputtered NiO Thin Films: An Effective Approach to Tune the Crystallization, Preferred Growth Orientation, and Electrical Properties. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800191.	2.4	2
157	Sodium chloride assists copper release, enhances antibacterial efficiency, and introduces atmospheric corrosion on copper surface. Surfaces and Interfaces, 2020, 20, 100630.	3.0	2
158	Real-time high-temperature scanning indentation: Probing physical changes in thin-film metallic glasses. Applied Materials Today, 2021, 24, 101126.	4.3	2
159	Thermodynamic and experimental study of low temperature ZrB2 chemical vapor deposition. European Physical Journal Special Topics, 2001, 11, Pr3-85-Pr3-91.	0.2	2
160	Effect of ZrCl4 addition on ZrB2 film synthesis in flowing Ar–BCl3 post-discharges. Surface and Coatings Technology, 2000, 133-134, 301-306.	4.8	1
161	OXYGEN PARTIAL PRESSURE AND SUBSTRATE BIAS VOLTAGE INFLUENCED STRUCTURAL, ELECTRICAL AND OPTICAL PROPERTIES OF RF MAGNETRON SPUTTERED Ag2Cu2O3 FILMS. International Journal of Nanoscience, 2011, 10, 653-657.	0.7	1
162	Structural, Electrical and Optical Behaviour of RF Magnetron Sputtered Nanocrystalline Silver Oxide Films: Bias Effect. , 2011, , .		1

#	Article	IF	CITATIONS
163	Evolution of structural and physical properties upon annealing of sputter-deposited Zr0.84Y0.16-O2films incorporating copper and palladium nanoparticles. IOP Conference Series: Materials Science and Engineering, 2009, 5, 012022.	0.6	0
164	Structure and Chemical Bonds in Black Ti(C, N, O) Thin Films. , 2010, , .		0
165	Impact of the particles impingement on the electronic conductivity of Al doped ZnO films grown by reactive magnetron sputtering. IOP Conference Series: Materials Science and Engineering, 2010, 12, 012006.	0.6	0
166	Growth, electrical and optical behaviour of nanocrystalline Ag ₂ Cu ₂ O ₃ films produced by RF magnetron sputtering. Crystal Research and Technology, 2011, 46, 1329-1336.	1.3	0
167	Two anode materials for Li ion batteries with different reaction mechanisms : silicon nanowires and ruthenium nitride thin film. , 2014, , .		0
168	E-MRS 2015 Symposium EE: Protective coatings and thin films. Surface and Coatings Technology, 2016, 295, 1.	4.8	0
169	Comparison Between Ultrathin Films of YSZ Deposited at the Solid Oxide Fuel Cell Cathode/Electrolyte Interface by Atomic Layer Deposition, Dip-Coating or Sputtering. Open Fuels and Energy Science Journal, 2009, 2, 87-99.	0.2	0
170	Physical Behaviour of RF Magnetron Sputtered Ag2Cu2O3 Films: Influence of Oxygen Partial Pressure and Substrate Temperature. Advanced Science Letters, 2014, 20, 946-952.	0.2	0
171	Substrate Temperature Influenced Structural and Optical Properties of RF Sputtered Ag–Cu–O Films. Advanced Science Letters, 2016, 22, 51-55.	0.2	0