
Feng Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1816107/publications.pdf Version: 2024-02-01

FENC WEN

#	Article	IF	CITATIONS
1	Pathogenicity and transmissibility of current H3N2 swine influenza virus in Southern China: A zoonotic potential. Transboundary and Emerging Diseases, 2022, 69, 2052-2064.	1.3	9
2	A novel amino acid site of N protein could affect the PRRSV-2 replication by regulating the viral RNA transcription. BMC Veterinary Research, 2022, 18, 171.	0.7	3
3	Potential Threats to Human Health from Eurasian Avian-Like Swine Influenza A(H1N1) Virus and Its Reassortants. Emerging Infectious Diseases, 2022, 28, 1489-1493.	2.0	4
4	Genetic characterization of an H5N6 avian influenza virus from chickens in Guangdong, China. Journal of Infection, 2021, 82, 414-451.	1.7	3
5	Weighted gene co-expression network analysis revealed host transcriptional response to H1N1 influenza A virus infection. Journal of Infection, 2021, 82, e4-e7.	1.7	2
6	Genetic characterization of an H5N6 avian influenza virus with multiple origins from a chicken in southern China, October 2019. BMC Veterinary Research, 2021, 17, 200.	0.7	2
7	The influence on oxidative stress markers, inflammatory factors and intestinal injury-related molecules in Wahui pigeon induced by lipopolysaccharide. PLoS ONE, 2021, 16, e0251462.	1.1	4
8	Genetic characterization and phylogenetic analysis of porcine epidemic diarrhea virus in Guangdong, China, between 2018 and 2019. PLoS ONE, 2021, 16, e0253622.	1.1	18
9	Letter to the editor: Sequencing bias for residue 28 of the neuraminidase of the recent highly pathogenic avian influenza virus A(H5N8). Eurosurveillance, 2021, 26, .	3.9	1
10	Reâ€emergence of highly pathogenic avian influenza A(H5N8) virus in domestic Goose, China. Journal of Infection, 2021, 83, 709-737.	1.7	5
11	Identification of coevolution sites and evolution history for neuraminidase of human influenza A viruses. Journal of Infection, 2020, 80, 232-254.	1.7	1
12	Egg adaptive mutation patterns of H3N2 human influenza A viruses. Journal of Infection, 2020, 80, 232-254.	1.7	1
13	Genetic characterization of a novel genotype H9N2 avian influenza virus from chicken in South China. Journal of Infection, 2020, 81, 816-846.	1.7	7
14	The role of PA-X C-terminal 20 residues of classical swine influenza virus in its replication and pathogenicity. Veterinary Microbiology, 2020, 251, 108916.	0.8	9
15	Identification of the hyper-variable genomic hotspot for the novel coronavirus SARS-CoV-2. Journal of Infection, 2020, 80, 671-693.	1.7	41
16	Graph-guided multi-task sparse learning model: a method for identifying antigenic variants of influenza A(H3N2) virus. Bioinformatics, 2019, 35, 77-87.	1.8	14
17	Influenza Neuraminidase: Underrated Role in Receptor Binding. Trends in Microbiology, 2019, 27, 477-479.	3.5	33
18	A metaâ€analysis identified genes responsible for distinct immune responses to trivalent inactivated and live attenuated influenza vaccines. Journal of Cellular Physiology, 2019, 234, 5196-5202.	2.0	6

Feng Wen

 A Y161F Hemagglutinin Substitution Increases Thermostability and Improves Yields of 2009 H1N1 Influenza A Virus in Cells. Journal of Virology, 2018, 92, . Sex-specific patterns of gene expression following influenza vaccination. Scientific Reports, 2018, 8, 13517. Mutation W222L at the Receptor Binding Site of Hemagglutinin Could Facilitate Viral Adaption from Equine Influenza A(H3N8) Virus to Dogs. Journal of Virology, 2018, 92, . Protective efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the European Avian-like H1N1 swine influenza virus in mice and pigs. Veterinary Microbiology, 2018, 222, 75-84. Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus. Journal of Virology, 2017, 91, . A meta-analysis of transcriptomic characterization revealed extracellular matrix pathway involved in the H5N1 and H7N9 infections. Oncotarget, 2017, 8, 62561-62572. A novel M2e-multiple antigenic peptide providing heterologous protection in mice. Journal of Veterinary Science, 2016, 17, 71. 	IF	CITATIONS
 13517. Mutation W222L at the Receptor Binding Site of Hemagglutinin Could Facilitate Viral Adaption from Equine Influenza A(H3N8) Virus to Dogs. Journal of Virology, 2018, 92, . Protective efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the European Avian-like H1N1 swine influenza virus in mice and pigs. Veterinary Microbiology, 2018, 222, 75-84. Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus. Journal o Virology, 2017, 91, . A meta-analysis of transcriptomic characterization revealed extracellular matrix pathway involved in the H5N1 and H7N9 infections. Oncotarget, 2017, 8, 62561-62572. 	1.5	21
 Equine Influenza A(H3N8) Virus to Dogs. Journal of Virology, 2018, 92, . Protective efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the European Avian-like H1N1 swine influenza virus in mice and pigs. Veterinary Microbiology, 2018, 222, 75-84. Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus. Journal o Virology, 2017, 91, . A meta-analysis of transcriptomic characterization revealed extracellular matrix pathway involved in the H5N1 and H7N9 infections. Oncotarget, 2017, 8, 62561-62572. A novel M2e-multiple antigenic peptide providing heterologous protection in mice. Journal of 	1.6	12
 Avian-like H1N1 swine influenza virus in mice and pigs. Veterinary Microbiology, 2018, 222, 75-84. Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus. Journal o Virology, 2017, 91, . A meta-analysis of transcriptomic characterization revealed extracellular matrix pathway involved in the H5N1 and H7N9 infections. Oncotarget, 2017, 8, 62561-62572. A novel M2e-multiple antigenic peptide providing heterologous protection in mice. Journal of 	1.5	27
 Virology, 2017, 91, . A meta-analysis of transcriptomic characterization revealed extracellular matrix pathway involved in the H5N1 and H7N9 infections. Oncotarget, 2017, 8, 62561-62572. A novel M2e-multiple antigenic peptide providing heterologous protection in mice. Journal of 	0.8	5
 the H5N1 and H7N9 infections. Oncotarget, 2017, 8, 62561-62572. A novel M2e-multiple antigenic peptide providing heterologous protection in mice. Journal of 	1.5	15
	0.8	4
	0.5	5
Novel triple-reassortant H1N1 swine influenza viruses in pigs in Tianjin, Northern China. Veterinary Microbiology, 2016, 183, 85-91.	0.8	23
 Identification of the source of A (H10N8) virus causing human infection. Infection, Genetics and Evolution, 2015, 30, 159-163. 	1.0	18
 Error-prone pcr-based mutagenesis strategy for rapidly generating high-yield influenza vaccine candidates. Virology, 2015, 482, 234-243. 	1.1	17
Protective efficacy of a high-growth reassortant swine H3N2 inactivated vaccine constructed by reverse genetic manipulation. Journal of Veterinary Science, 2014, 15, 381.	0.5	2
³⁰ Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs. Archives of Virology, 2014, 159, 2957-2967.	0.9	7
Molecular cloning and characterizations of porcine SAMHD1 and its roles in replication of highly pathogenic porcine reproductive and respiratory syndrome virus. Developmental and Comparative Immunology, 2014, 47, 234-246.	1.0	18
Apolipoprotein E gene polymorphism and Alzheimer's disease in Chinese population: a meta-analysis. Scientific Reports, 2014, 4, 4383.	1.6	61
An M2e-based synthetic peptide vaccine for influenza A virus confers heterosubtypic protection from lethal virus challenge. Virology Journal, 2013, 10, 227.	1.4	29
Second receptor binding site of influenza A virus neuraminidase: a key factor for virus host range?. Future Virology, 0, , .	0.9	0