
Joshua Munger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/181606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation. Immunity, 2011, 35, 871-882.	6.6	1,698
2	Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nature Biotechnology, 2008, 26, 1179-1186.	9.4	562
3	A roadmap for interpreting 13 C metabolite labeling patterns from cells. Current Opinion in Biotechnology, 2015, 34, 189-201.	3.3	513
4	Dynamics of the Cellular Metabolome during Human Cytomegalovirus Infection. PLoS Pathogens, 2006, 2, e132.	2.1	361
5	Stealing the Keys to the Kitchen: Viral Manipulation of the Host Cell Metabolic Network. Trends in Microbiology, 2015, 23, 789-798.	3.5	164
6	Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells. Journal of Biological Chemistry, 2013, 288, 33542-33558.	1.6	163
7	Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells. Cell Reports, 2016, 17, 821-836.	2.9	132
8	Acidic pH Is a Metabolic Switch for 2-Hydroxyglutarate Generation and Signaling. Journal of Biological Chemistry, 2016, 291, 20188-20197.	1.6	118
9	The U S 3 Protein Kinase Blocks Apoptosis Induced by the d 120 Mutant of Herpes Simplex Virus 1 at a Premitochondrial Stage. Journal of Virology, 2001, 75, 5491-5497.	1.5	99
10	Human Cytomegalovirus Induces the Activity and Expression of Acetyl-Coenzyme A Carboxylase, a Fatty Acid Biosynthetic Enzyme Whose Inhibition Attenuates Viral Replication. Journal of Virology, 2011, 85, 5814-5824.	1.5	96
11	HCMV Targets the Metabolic Stress Response through Activation of AMPK Whose Activity Is Important for Viral Replication. PLoS Pathogens, 2012, 8, e1002502.	2.1	94
12	Inhibition of Calmodulin-Dependent Kinase Kinase Blocks Human Cytomegalovirus-Induced Glycolytic Activation and Severely Attenuates Production of Viral Progeny. Journal of Virology, 2011, 85, 705-714.	1.5	79
13	The Herpes Simplex Virus 1 U S 3 Protein Kinase Blocks Caspase-Dependent Double Cleavage and Activation of the Proapoptotic Protein BAD. Journal of Virology, 2003, 77, 6567-6573.	1.5	69
14	Bcl-2 Blocks a Caspase-Dependent Pathway of Apoptosis Activated by Herpes Simplex Virus 1 Infection in HEp-2 Cells. Journal of Virology, 2000, 74, 1931-1938.	1.5	59
15	Cytomegalovirus-mediated activation of pyrimidine biosynthesis drives UDP–sugar synthesis to support viral protein glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18019-18024.	3.3	58
16	U S 3 Protein Kinase of Herpes Simplex Virus 1 Blocks Caspase 3 Activation Induced by the Products of U S 1.5 and U L 13 Genes and Modulates Expression of Transduced U S 1.5 Open Reading Frame in a Cell Type-Specific Manner. Journal of Virology, 2002, 76, 743-754.	1.5	56
17	Inhibition of Arenavirus by A3, a Pyrimidine Biosynthesis Inhibitor. Journal of Virology, 2014, 88, 878-889.	1.5	53
18	UL26-Deficient Human Cytomegalovirus Produces Virions with Hypophosphorylated pp28 Tegument Protein That Is Unstable within Newly Infected Cells. Journal of Virology, 2006, 80, 3541-3548.	1.5	52

Joshua Munger

#	Article	IF	CITATIONS
19	The Human Cytomegalovirus U _L 26 Protein Antagonizes NF-κB Activation. Journal of Virology, 2014, 88, 14289-14300.	1.5	50
20	Metabolomic profiling of the heart during acute ischemic preconditioning reveals a role for SIRT1 in rapid cardioprotective metabolic adaptation. Journal of Molecular and Cellular Cardiology, 2015, 88, 64-72.	0.9	47
21	Who's Driving? Human Cytomegalovirus, Interferon, and NFκB Signaling. Viruses, 2018, 10, 447.	1.5	43
22	The Human Cytomegalovirus UL38 protein drives mTOR-independent metabolic flux reprogramming by inhibiting TSC2. PLoS Pathogens, 2019, 15, e1007569.	2.1	42
23	mTOR Dysregulation by Vaccinia Virus F17 Controls Multiple Processes with Varying Roles in Infection. Journal of Virology, 2019, 93, .	1.5	35
24	Meal for Two: Human Cytomegalovirus-Induced Activation of Cellular Metabolism. Viruses, 2019, 11, 273.	1.5	34
25	Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages. Virology, 2016, 491, 106-114.	1.1	32
26	Expression of Oncogenic Alleles Induces Multiple Blocks to Human Cytomegalovirus Infection. Journal of Virology, 2016, 90, 4346-4356.	1.5	29
27	Editing the human cytomegalovirus genome with the CRISPR/Cas9 system. Virology, 2019, 529, 186-194.	1.1	21
28	Interplay Between Calcium and AMPK Signaling in Human Cytomegalovirus Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 384.	1.8	19
29	Mutation of ataxia–telangiectasia mutated is associated with dysfunctional glutathione homeostasis in cerebellar astroglia. Clia, 2016, 64, 227-239.	2.5	13
30	Distinct Domains within the Human Cytomegalovirus UL26 Protein Are Important for Wildtype Viral Replication and Virion Stability. PLoS ONE, 2014, 9, e88101.	1.1	12
31	U _L 26 Attenuates IKKβ-Mediated Induction of Interferon-Stimulated Gene (ISG) Expression and Enhanced Protein ISGylation during Human Cytomegalovirus Infection. Journal of Virology, 2019, 93, .	1.5	12
32	Human Cytomegalovirus Induces the Expression of the AMPKa2 Subunit To Drive Glycolytic Activation and Support Productive Viral Infection. Journal of Virology, 2021, 95, .	1.5	10
33	The lκB Kinases Restrict Human Cytomegalovirus Infection. Journal of Virology, 2019, 93, .	1.5	6
34	TNFα-induced metabolic reprogramming drives an intrinsic anti-viral state. PLoS Pathogens, 2022, 18, e1010722.	2.1	2
35	Transformation with Oncogenic Ras and the Simian Virus 40 T Antigens Induces Caspase-Dependent Sensitivity to Fatty Acid Biosynthetic Inhibition. Journal of Virology, 2015, 89, 6406-6417.	1.5	1
36	Contributions of the Human Cytomegalovirus U _L 30-Associated Open Reading Frames to Infection. Journal of Virology, 2021, 95, .	1.5	0