Mandana Amiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1815822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoparticles in electrochemical sensors for environmental monitoring. TrAC - Trends in Analytical Chemistry, 2011, 30, 1704-1715.	11.4	231
2	Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chemical Society Reviews, 2019, 48, 4281-4316.	38.1	187
3	Electrochemical Methodologies for the Detection of Pathogens. ACS Sensors, 2018, 3, 1069-1086.	7.8	178
4	Electrostatic accumulation and determination of triclosan in ultrathin carbon nanoparticle composite film electrodes. Analytica Chimica Acta, 2007, 593, 117-122.	5.4	72
5	Graphitic Carbon Nitride/Chitosan Composite for Adsorption and Electrochemical Determination of Mercury in Real Samples. Industrial & Engineering Chemistry Research, 2016, 55, 8114-8122.	3.7	71
6	Ultrathin Carbon Nanoparticle Composite Film Electrodes: Distinguishing Dopamine and Ascorbate. Electroanalysis, 2007, 19, 1032-1038.	2.9	67
7	Multi-walled carbon nanotube paste electrode for selective voltammetric detection of isoniazid. Mikrochimica Acta, 2007, 157, 149-158.	5.0	62
8	Poly-dopamine films: Voltammetric sensor for pH monitoring. Sensors and Actuators B: Chemical, 2016, 228, 53-58.	7.8	59
9	Electrocatalytic determination of sumatriptan on the surface of carbon-paste electrode modified with a composite of cobalt/Schiff-base complex and carbon nanotube. Bioelectrochemistry, 2011, 81, 81-85.	4.6	47
10	Carbon nanoparticle–chitosan composite electrode with anion, cation, and neutral binding sites: Dihydroxybenzene selectivity. Sensors and Actuators B: Chemical, 2012, 162, 194-200.	7.8	45
11	Poly-dopamine thin film for voltammetric sensing of atenolol. Sensors and Actuators B: Chemical, 2015, 216, 551-557.	7.8	38
12	Development of the catalytic reactivity of an oxo–peroxo Mo(<scp>vi</scp>) Schiff base complex supported on supermagnetic nanoparticles as a reusable green nanocatalyst for selective epoxidation of olefins. RSC Advances, 2016, 6, 27452-27459.	3.6	38
13	<i>In Situ</i> Synthesis of Co ₃ O ₄ /CoFe ₂ O ₄ Derived from a Metal–Organic Framework on Nickel Foam: High-Performance Electrocatalyst for Water Oxidation. ACS Applied Energy Materials, 2021, 4, 2951-2959.	5.1	34
14	An Overview on Electrochemical Determination of Cholesterol. Electroanalysis, 2020, 32, 1391-1407.	2.9	33
15	Synthesis, characterization, and immobilization of nickel(II) tetradentate Schiff-base complexes on clay as heterogeneous catalysts for the oxidation of cyclooctene. Journal of Coordination Chemistry, 2011, 64, 1837-1847.	2.2	31
16	Entrapment of uropathogenic E. coli cells into ultra-thin sol-gel matrices on gold thin films: A low cost alternative for impedimetric bacteria sensing. Biosensors and Bioelectronics, 2019, 124-125, 161-166.	10.1	29
17	Nickel (II) incorporated AIPO-5 modified carbon paste electrode for determination of thioridazine in human serum. Materials Science and Engineering C, 2014, 37, 342-347.	7.3	28
18	Dispersive liquid–liquid microextraction based on solidification of floating organic droplet followed by spectrofluorimetry for determination of carvedilol in human plasma. Bioanalysis, 2013, 5, 437-448.	1.5	27

MANDANA AMIRI

#	Article	IF	CITATIONS
19	Hydrophilic carbon nanoparticulates at the surface of carbon paste electrode improve determination of paracetamol, phenylephrine and dextromethorphan. Journal of Electroanalytical Chemistry, 2014, 735, 10-18.	3.8	27
20	Mercaptotriazole as a nucleophile in addition to o-quinone electrochemically derived from catechol: application to electrosynthesis of a new group of triazole compounds. Electrochemistry Communications, 2005, 7, 68-73.	4.7	25
21	Solution Processable Cu(II)macrocycle for the Formation of Cu ₂ 0 Thin Film on Indium Tin Oxide and Its Application for Water Oxidation. Journal of Physical Chemistry C, 2018, 122, 16510-16518.	3.1	25
22	Voltammetric determination of thiocytosine based on its electrocatalytic oxidation on the surface of carbon-paste electrode modified with cobalt Schiff base complexes. Journal of Solid State Electrochemistry, 2007, 11, 1133-1138.	2.5	23
23	Cu(II) Schiff base complexes on montmorillonite as nano-reactor heterogeneous catalysts for the epoxidation of cyclooctene: synthesis, characterization and immobilization. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 367-381.	1.7	22
24	Simultaneous voltammetric determination of uric acid and ascorbic acid using carbon paste/cobalt Schiff base composite electrode. Journal of Solid State Electrochemistry, 2012, 16, 2187-2195.	2.5	22
25	Graphene-family materials in electrochemical aptasensors. Analytical and Bioanalytical Chemistry, 2021, 413, 673-699.	3.7	22
26	Cobalt Flower-like Nanostructure as Modifier for Electrocatalytic Determination of Chloropheniramine. Industrial & Engineering Chemistry Research, 2012, 51, 14384-14389.	3.7	20
27	Excellent photocatalytic reduction of nitroarenes to aminoarenes by BiVO ₄ nanoparticles grafted on reduced graphene oxide (rGO/BiVO ₄). Applied Organometallic Chemistry, 2019, 33, e5059.	3.5	19
28	Facile synthesis of silver nanostructures by using various deposition potential and time: A nonenzymetic sensor for hydrogen peroxide. Materials Chemistry and Physics, 2015, 155, 129-135.	4.0	18
29	Amino functionalized ATRP-prepared polyacrylamide-g-magnetite nanoparticles for the effective removal of Cu(II) ions: Kinetics investigations. Materials Chemistry and Physics, 2018, 205, 195-205.	4.0	18
30	Covalent supporting of novel dioxoâ€molybdenum tetradentate pyrroleâ€imine complex on Fe ₃ O ₄ as highâ€efficiency nanocatalyst for selective epoxidation of olefins. Applied Organometallic Chemistry, 2017, 31, e3804.	3.5	17
31	Modification of MnFe2O4 surface by Mo (VI) pyridylimine complex as an efficient nanocatalyst for (ep)oxidation of alkenes and sulfides. Journal of Molecular Liquids, 2021, 330, 115690.	4.9	16
32	Cysteine-anchored receptor on carbon nanoparticles for dopamine sensing. Electrochimica Acta, 2014, 123, 362-368.	5.2	15
33	Magnetically Reusable MnFe ₂ O ₄ Nanoparticles Modified with Oxoâ€Peroxo Mo (VI) Schiffâ€Base Complexes: A High Efficiency Catalyst for Olefin Epoxidation under Solventâ€Free Conditions. ChemistrySelect, 2018, 3, 2877-2881.	1.5	15
34	Mixed metal oxides as efficient electrocatalysts for water oxidation. International Journal of Hydrogen Energy, 2022, 47, 5250-5259.	7.1	14
35	Effect of post-annealing treatment on the wetting, optical and structural properties of Ag/Indium tin oxide thin films prepared by electron beam evaporation technique. Materials Express, 2015, 5, 137-145.	0.5	13
36	Palladium nanoparticles in electrochemical sensing of trace terazosin in human serum and pharmaceutical preparations. Materials Science and Engineering C, 2017, 75, 368-374.	7.3	12

MANDANA AMIRI

#	Article	IF	CITATIONS
37	Copperâ€based metal–organic framework decorated by CuO hairâ€like nanostructures: Electrocatalyst for oxygen evolution reaction. Applied Organometallic Chemistry, 2020, 34, e5871.	3.5	11
38	Electrochemiluminescence Sensor Based on N-Doped Carbon Quantum Dots for Determination of Ceftazidime in Real Samples. Journal of the Electrochemical Society, 2022, 169, 026523.	2.9	11
39	Interfacial Electron-Shuttling Processes across KolliphorEL Monolayer Grafted Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 15458-15465.	8.0	10
40	Carbon nanoparticles with tosyl functional group for distinguishing voltammetric peaks of ascorbic acid and uric acid. Materials Science and Engineering C, 2015, 47, 189-195.	7.3	10
41	Pre-Adsorbed Methylene Blue at Carbon-Modified TiO ₂ Electrode: Application for Lead Sensing in Water. IEEE Sensors Journal, 2018, 18, 9477-9485.	4.7	10
42	Polymers of intrinsic microporosity (PIMs) in sensing and in electroanalysis. Current Opinion in Chemical Engineering, 2022, 35, 100765.	7.8	10
43	Positively charged carbon nanoparticulate/sodium dodecyl sulphate bilayer electrode for extraction and voltammetric determination of ciprofloxacin in real samples. RSC Advances, 2016, 6, 30867-30874.	3.6	9
44	Transfer of multivariate calibration model for simultaneous electrochemical determination of ascorbic acid and uric acid. Journal of Chemical Sciences, 2021, 133, 1.	1.5	9
45	Alizarin-modified sulfonate carbon nanoparticles in vanadium sensing. Journal of Solid State Electrochemistry, 2014, 18, 1005-1013.	2.5	8
46	Nanomolar Determination of Penicillamine by Using a Novel Cobalt/Polyaniline/Carbon Paste Nanocomposite Electrode. Electroanalysis, 2012, 24, 2186-2192.	2.9	7
47	Non-enzymatic electrochemical cholesterol sensor based on strong host-guest interactions with a polymer of intrinsic microporosity (PIM) with DFT study. Analytical and Bioanalytical Chemistry, 2021, 413, 6523-6533.	3.7	7
48	Synthesis, characterization, crystal structure, electrochemical, solvatochromic and biological investigation of novel N4 and N3 type Cu(<scp>ii</scp>) Schiff base complexes. New Journal of Chemistry, 2017, 41, 12554-12561.	2.8	6
49	Manganese Ferrite Nanoparticles Modified by Mo(VI) Complex: Highly Efficient Catalyst for Sulfides and Olefins Oxidation Under Solventâ€less Condition. ChemistrySelect, 2019, 4, 7116-7122.	1.5	6
50	An Overview on Electrochemical Sensors Based on Nanomaterials for the Determination of Drugs of Abuse. Current Drug Delivery, 2021, 18, 162-183.	1.6	6
51	Voltammetric Chloride Sensing Based on Trace-Level Mercury Impregnation Into Amine-Functionalized Carbon Nanoparticle Films. IEEE Sensors Journal, 2017, 17, 5437-5443.	4.7	5
52	Effect of Carbon Support on the Electrocatalytic Performance of the Pt Nanoparticles Toward Oxidation of Formic Acid. Catalysis Letters, 2020, 150, 312-321.	2.6	5
53	Indirect Determination of Amikacin by Gold Nanoparticles as Redox Probe. Current Drug Delivery, 2021, 18, 761-769.	1.6	4
54	Electrochemical Determination of Famotidine in Real Samples Using rGO/Cu ₂ O Nanocomposite Modified Carbon Paste Electrode. Journal of the Electrochemical Society, 2022, 169, 016505.	2.9	4

MANDANA AMIRI

#	Article	IF	CITATIONS
55	Adsorption of Amlodipine at the Surface of Tosyl─Carbon Nanoparticles for Electrochemical Sensing. Iranian Journal of Pharmaceutical Research, 2016, 15, 303-311.	0.5	3
56	Nucleophilic Addition of Thiaproline to Electrochemically Derivedo-Quinone, Application to the Sensitive Voltammetric Detection of Thiaproline. Electroanalysis, 2006, 18, 2225-2231.	2.9	1
57	Chemometrics-assisted electrochemical determination of dextromethorphan hydrobromide and phenylephrine hydrochloride by carbon paste electrode. Chemical Papers, 2021, 75, 6565-6573.	2.2	1
58	Achievements of Graphene and Its Derivatives Materials on Electrochemical Drug Assays and Drug-DNA Interactions Critical Reviews in Analytical Chemistry, 2021, , 1-22.	3.5	0
59	A mini review on materials used for the colorimetric detection of corticosteroids. Chemical Papers, 0, , 1.	2.2	0