Felix Schürmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/181568/publications.pdf

Version: 2024-02-01

44 papers

3,511 citations

279701 23 h-index 42 g-index

48 all docs

48 docs citations

48 times ranked

3207 citing authors

#	Article	IF	Citations
1	Representing stimulus information in an energy metabolism pathway. Journal of Theoretical Biology, 2022, 540, 111090.	0.8	2
2	Computational Concepts for Reconstructing and Simulating Brain Tissue. Advances in Experimental Medicine and Biology, 2022, 1359, 237-259.	0.8	2
3	Reconstruction of the Hippocampus. Advances in Experimental Medicine and Biology, 2022, 1359, 261-283.	0.8	10
4	Die Welt im Meer. WerkstattGeschichte, 2021, 83, 69-84.	0.0	0
5	Metaball skinning of synthetic astroglial morphologies into realistic mesh models for <i>in silico</i> simulations and visual analytics. Bioinformatics, 2021, 37, i426-i433.	1.8	6
6	Excitation states of metabolic networks predict dose-response fingerprinting and ligand pulse phase signalling. Journal of Theoretical Biology, 2020, 487, 110123.	0.8	3
7	Understanding Computational Costs of Cellular-Level Brain Tissue Simulations Through Analytical Performance Models. Neuroinformatics, 2020, 18, 407-428.	1.5	8
8	An efficient analytical reduction of detailed nonlinear neuron models. Nature Communications, 2020, 11, 288.	5.8	22
9	Analytic performance modeling and analysis of detailed neuron simulations. International Journal of High Performance Computing Applications, 2020, 34, 428-449.	2.4	9
10	An Optimizing Multi-platform Source-to-source Compiler Framework for the NEURON MODeling Language. Lecture Notes in Computer Science, 2020, , 45-58.	1.0	5
11	CoreNEURON: An Optimized Compute Engine for the NEURON Simulator. Frontiers in Neuroinformatics, 2019, 13, 63.	1.3	58
12	Asynchronous Branch-Parallel Simulation of Detailed Neuron Models. Frontiers in Neuroinformatics, 2019, 13, 54.	1.3	4
13	Fully-Asynchronous Cache-Efficient Simulation of Detailed Neural Networks. Lecture Notes in Computer Science, 2019, , 421-434.	1.0	2
14	The Scientific Case for Brain Simulations. Neuron, 2019, 102, 735-744.	3.8	123
15	The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow. PLoS Computational Biology, 2018, 14, e1006423.	1.5	91
16	Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate. PLoS Computational Biology, 2018, 14, e1006392.	1.5	47
17	NeuroMorphoVis: a collaborative framework for analysis and visualization of neuronal morphology skeletons reconstructed from microscopy stacks. Bioinformatics, 2018, 34, i574-i582.	1.8	43
18	Bio-physically plausible visualization of highly scattering fluorescent neocortical models for in silico experimentation. BMC Bioinformatics, 2017, 18, 62.	1.2	14

#	Article	IF	Citations
19	Single Neuron Optimization as a Basis for Accurate Biophysical Modeling: The Case of Cerebellar Granule Cells. Frontiers in Cellular Neuroscience, 2017, 11, 71.	1.8	36
20	Reconstruction and visualization of large-scale volumetric models of neocortical circuits for physically-plausible in silico optical studies. BMC Bioinformatics, 2017, 18, 402.	1.2	9
21	BluePyOpt: Leveraging Open Source Software and Cloud Infrastructure to Optimise Model Parameters in Neuroscience. Frontiers in Neuroinformatics, 2016, 10, 17.	1.3	138
22	Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON. Neural Computation, 2016, 28, 2063-2090.	1.3	40
23	The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex. Frontiers in Neural Circuits, 2015, 9, 44.	1.4	138
24	Performance evaluation of the IBM POWER8 architecture to support computational neuroscientific application using morphologically detailed neurons. , 2015, , .		10
25	An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse. PLoS Computational Biology, 2015, 11, e1004253.	1.5	49
26	Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 2015, 163, 456-492.	13.5	1,258
27	Preserving axosomatic spiking features despite diverse dendritic morphology. Journal of Neurophysiology, 2013, 109, 2972-2981.	0.9	64
28	Intrinsic morphological diversity of thickâ€tufted layer 5 pyramidal neurons ensures robust and invariant properties of <i>in silico</i> synaptic connections. Journal of Physiology, 2012, 590, 737-752.	1.3	44
29	Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2885-94.	3.3	178
30	Combinatorial Expression Rules of Ion Channel Genes in Juvenile Rat (Rattus norvegicus) Neocortical Neurons. PLoS ONE, 2012, 7, e34786.	1.1	14
31	Comparison of neuronal spike exchange methods on a Blue Gene/P supercomputer. Frontiers in Computational Neuroscience, 2011, 5, 49.	1.2	42
32	Channelpedia: An Integrative and Interactive Database for Ion Channels. Frontiers in Neuroinformatics, 2011, 5, 36.	1.3	65
33	Models of Neocortical Layer 5b Pyramidal Cells Capturing aÂWide Range of Dendritic and Perisomatic Active Properties. PLoS Computational Biology, 2011, 7, e1002107.	1.5	313
34	Effective Stimuli for Constructing Reliable Neuron Models. PLoS Computational Biology, 2011, 7, e1002133.	1.5	49
35	A Component-Based Extension Framework for Large-Scale Parallel Simulations in NEURON. Frontiers in Neuroinformatics, 2009, 3, 10.	1.3	18
36	Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. Journal of Computational Neuroscience, 2008, 25, 203-210.	0.6	47

#	Article	IF	CITATIONS
37	Fully implicit parallel simulation of single neurons. Journal of Computational Neuroscience, 2008, 25, 439-448.	0.6	76
38	The quantitative single-neuron modeling competition. Biological Cybernetics, 2008, 99, 417-426.	0.6	103
39	Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological Cybernetics, 2008, 99, 371-379.	0.6	53
40	Special issue on quantitative neuron modeling. Biological Cybernetics, 2008, 99, 237-239.	0.6	12
41	A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroscience, 2007, 1, 7-18.	1.4	260
42	Fully implicit parallel simulation of single neurons. BMC Neuroscience, 2007, 8, .	0.8	1
43	A Mixed-Mode Analog Neural Network Using Current-Steering Synapses. Analog Integrated Circuits and Signal Processing, 2004, 38, 233-244.	0.9	17
44	Modernizing the NEURON Simulator for Sustainability, Portability, and Performance. Frontiers in Neuroinformatics, 0, 16 , .	1.3	16