Krzysztof G Topolski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1815334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress in the characterization of explosively joined Ti/Ni bimetals. Materials & Design, 2014, 63, 479-487.	5.1	33
2	Progress in hydrostatic extrusion of titanium. Journal of Materials Science, 2013, 48, 4543-4548.	3.7	31
3	Microstructure and Properties of the Ti6Al4V/Inconel 625 Bimetal Obtained by Explosive Joining. Journal of Materials Engineering and Performance, 2016, 25, 3231-3237.	2.5	22
4	Structure and properties of titanium produced by a new method of chip recycling. Journal of Materials Processing Technology, 2017, 248, 80-91.	6.3	21
5	Bulk nanostructured titanium fabricated by hydrostatic extrusion. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1391-1394.	0.8	18
6	Manufacturing of nanostructured titanium Grade2 using caliber rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 277-288.	5.6	17
7	Chitosan/bioactive glass coatings as a protective layer against corrosion of nanocrystalline titanium under simulated inflammation. Materials Letters, 2020, 264, 127284.	2.6	13
8	Nanocrystalline Titanium Rods Processed by Hydrostatic Extrusion. Materials Science Forum, 0, 584-586, 777-782.	0.3	12
9	Elastic modulus of nanocrystalline titanium evaluated by cyclic tensile method. Archives of Civil and Mechanical Engineering, 2016, 16, 927-934.	3.8	11
10	High-strength ultrafine-grained titanium 99.99 manufactured by large strain plastic working. Journal of Materials Science, 2020, 55, 4910-4925.	3.7	8
11	Homogeneity of Bulk Nanostructured Titanium Obtained by Hydrostatic Extrusion. Materials Science Forum, 0, 674, 47-51.	0.3	7
12	The Influence of the Initial State on Microstructure and Mechanical Properties of Hydrostatically Extruded Titanium. Solid State Phenomena, 2008, 140, 191-196.	0.3	5
13	The Influence of Deformation the Corrosion Resistance of Titanium Grade2. Solid State Phenomena, 0, 227, 27-30.	0.3	5
14	Solid state processing of titanium chips by an unconventional plastic working. Journal of Materials Research and Technology, 2021, 13, 808-822.	5.8	4
15	Structural Aspects and Characterization of Structure in the Processing of Titanium Grade4 Different Chips. Metals, 2021, 11, 101.	2.3	4
16	A Novel Rolling Approach to Refining the Microstructure and Enhancing the Mechanical Strength of Pure Aluminium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 830-844.	2.2	3
17	A novel rolling procedure to enhance ECAP processed ultrafine grained materials. Materials Letters, 2018, 233, 270-273.	2.6	2
18	Relationship of microstructure and properties of high-purity titanium manufactured by unconventional method of chips recycling. Journal of Manufacturing Processes, 2022, 77, 426-438.	5.9	1

#	Article	IF	CITATIONS
19	Hydrostatic extrusion. , 2019, , 37-53.		0
20	HOMOGENEITY OF TITANIUM MANUFACTURED BY SOLID STATE CHIPS RECYCLING. MATTER International Journal of Science and Technology, 2021, 7, 16-28.	0.1	0
21	Analysis of Densification and Consolidation during the Solid-State Recycling of High Purity Titanium Chips. Journal of Materials Engineering and Performance, 0, , 1.	2.5	0