
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/18150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A multicentre study on spontaneous in-cage activity and micro-environmental conditions of IVC housed C57BL/6J mice during consecutive cycles of bi-weekly cage-change. PLoS ONE, 2022, 17, e0267281.	1.1	7
2	Major oscillations in spontaneous home-cage activity in C57BL/6 mice housed under constant conditions. Scientific Reports, 2021, 11, 4961.	1.6	17
3	Sarcopenia: What Is the Origin of This Aging-Induced Disorder?. Frontiers in Genetics, 2021, 12, 688526.	1.1	29
4	Longitudinal Muscle and Myocellular Changes in Community-Dwelling Men Over Two Decades of Successful Aging—The ULSAM Cohort Revisited. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 654-663.	1.7	7
5	Impairment of DHA synthesis alters the expression of neuronal plasticity markers and the brain inflammatory status in mice. FASEB Journal, 2020, 34, 2024-2040.	0.2	23
6	Towards large scale automated cage monitoring – Diurnal rhythm and impact of interventions on in-cage activity of C57BL/6J mice recorded 24/7 with a non-disrupting capacitive-based technique. PLoS ONE, 2019, 14, e0211063.	1.1	70
7	Muscle atrophy and regeneration associated with behavioural loss and recovery of function after sciatic nerve crush. Acta Physiologica, 2019, 227, e13335.	1.8	9
8	Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Human Molecular Genetics, 2015, 24, 1305-1321.	1.4	30
9	Dietary restriction reduces age-related degeneration of stria vascularis in the inner ear of the rat. Experimental Gerontology, 2013, 48, 1173-1179.	1.2	8
10	Changes in behaviors of male C57BL/6J mice across adult life span and effects of dietary restriction. Age, 2012, 34, 1435-1452.	3.0	61
11	Impaired mitochondrial respiration and decreased fatigue resistance followed by severe muscle weakness in skeletal muscle of mitochondrial DNA mutator mice. Journal of Physiology, 2012, 590, 6187-6197.	1.3	30
12	Commentaries on Viewpoint: Muscle atrophy is not always sarcopenia. Journal of Applied Physiology, 2012, 113, 680-684.	1.2	7
13	Behavioral changes in aging female C57BL/6 mice. Neurobiology of Aging, 2011, 32, 1868-1880.	1.5	100
14	Muscle Wasting in Aged, Sarcopenic Rats Is Associated with Enhanced Activity of the Ubiquitin Proteasome Pathway. Journal of Biological Chemistry, 2010, 285, 39597-39608.	1.6	188
15	Factors contributing to neuromuscular impairment and sarcopenia during aging. Physiology and Behavior, 2007, 92, 129-135.	1.0	147
16	Behavioral impairments of the aging rat. Physiology and Behavior, 2007, 92, 911-923.	1.0	117
17	Iron load and redox stress in skeletal muscle of aged rats. Muscle and Nerve, 2007, 36, 223-233.	1.0	73
18	The organization of the brainstem and spinal cord of the mouse: Relationships between monoaminergic, cholinergic, and spinal projection systems. Journal of Chemical Neuroanatomy, 2006, 31, 2-36.	1.0	108

#	Article	IF	CITATIONS
19	Atrogin-1/MAFbx and MuRF1 Are Downregulated in Aging-Related Loss of Skeletal Muscle. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 663-674.	1.7	164
20	Sarcopenia is not due to lack of regenerative drive in senescent skeletal muscle. Aging Cell, 2005, 4, 65-77.	3.0	88
21	Estrogen receptor-α and -β immunoreactive neurons in the brainstem and spinal cord of male and female mice: Relationships to monoaminergic, cholinergic, and spinal projection systems. Journal of Comparative Neurology, 2005, 488, 152-179.	0.9	134
22	Aging in the Peripheral Nervous System. , 2005, , 483-507.		7
23	MHC Class I, β2microglobulin, and the INF-γ receptor are upregulated in aged motoneurons. Journal of Neuroscience Research, 2004, 78, 892-900.	1.3	23
24	Glutamate and AMPA receptor immunoreactivity in Ia synapses with motoneurons and neurons of the central cervical nucleus. Experimental Brain Research, 2003, 149, 447-457.	0.7	11
25	Differential regulation of Shc adaptor proteins in skeletal muscle, spinal cord and forebrain of aged rats with sensorimotor impairment. Aging Cell, 2003, 2, 47-57.	3.0	14
26	Impairment of peripheral sensory innervation in senescence. Autonomic Neuroscience: Basic and Clinical, 2002, 96, 43-49.	1.4	34
27	Evidence for loss of myelinated input to the spinal cord in senescent rats. Neurobiology of Aging, 2002, 23, 271-286.	1.5	20
28	GABA-, glycine-, and glutamate-immunoreactive bouton profiles in apposition to neurons of the central cervical nucleus in the rat. The Anatomical Record, 2002, 266, 226-233.	2.3	4
29	Effect of peripheral nerve injury on dorsal root ganglion neurons in the C57 BL/6J mouse: marked changes both in cell numbers and neuropeptide expression. Neuroscience, 2001, 105, 249-263.	1.1	90
30	Retrograde labeling of primary sensory neurons with fluorescent latex microspheres: a useful tool for long term tagging of neurons. Journal of Neuroscience Methods, 2001, 108, 19-24.	1.3	7
31	Regulation of Neurotrophin Signaling in Aging Sensory and Motoneurons. Molecular Neurobiology, 2001, 21, 109-136.	1.9	34
32	Microglial activation, emergence of ED1-expressing cells and clusterin upregulation in the aging rat CNS, with special reference to the spinal cord. Brain Research, 2001, 899, 169-186.	1.1	70
33	Regulation of NGF-family ligands and receptors in adulthood and senescence: correlation to degenerative and regenerative changes in cutaneous innervation. European Journal of Neuroscience, 2000, 12, 2694-2706.	1.2	45
34	Multiple messengers in descending serotonin neurons: localization and functional implications. Journal of Chemical Neuroanatomy, 2000, 18, 75-86.	1.0	97
35	Two-Color Confocal Fluorescence Microscopy with Improved Channel Separation: Applications in Chemical Neuroanatomy. , 1999, , 25-33.		0
36	Increased glutathione levels in neurochemically identified fibre systems in the aged rat lumbar motor nuclei. European Journal of Neuroscience, 1999, 11, 2935-2948.	1.2	13

#	Article	IF	CITATIONS
37	Neuropeptides, nitric oxide synthase and GAP-43 in B4-binding and RT97 immunoreactive primary sensory neurons: normal distribution pattern and changes after peripheral nerve transection and aging. Brain Research, 1999, 832, 63-83.	1.1	94
38	Upregulation of GFRα-1 and c-ret in primary sensory neurons and spinal motoneurons of aged rats. Journal of Neuroscience Research, 1999, 57, 153-165.	1.3	20
39	Effects of aging and axotomy on the expression of neurotrophin receptors in primary sensory neurons. Journal of Comparative Neurology, 1999, 410, 368-386.	0.9	82
40	Reciprocal changes in the expression of neurotrophin mRNAs in target tissues and peripheral nerves of aged rats. Neuroscience Letters, 1999, 273, 187-190.	1.0	45
41	Expression of p75NTR, trkB and trkC in nonmanipulated and axotomized motoneurons of aged rats. Molecular Brain Research, 1999, 69, 21-34.	2.5	40
42	Evidence for increased GDNF signaling in aged sensory and motor neurons. NeuroReport, 1999, 10, 1529-1535.	0.6	20
43	Loss of primary sensory neurons in the very old rat: Neuron number estimates using the disector method and confocal optical sectioning. Journal of Comparative Neurology, 1998, 396, 211-222.	0.9	98
44	Distribution of glutamate-, glycine- and GABA-immunoreactive nerve terminals on dendrites in the cat spinal motor nucleus. Experimental Brain Research, 1998, 118, 517-532.	0.7	97
45	Ultrastructural detection of neuronally transported choleragenoid by postembedding immunocytochemistry in freeze-substituted Lowicryl HM20â,,¢ embedded tissue. Journal of Neuroscience Methods, 1998, 80, 129-136.	1.3	13
46	Decreased Axosomatic Input to Motoneurons and Astrogliosis in the Spinal Cord of Aged Rats. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 1998, 53A, B369-B379.	1.7	33
47	Loss of primary sensory neurons in the very old rat: Neuron number estimates using the disector method and confocal optical sectioning. , 1998, 396, 211.		1
48	Loss of primary sensory neurons in the very old rat: neuron number estimates using the disector method and confocal optical sectioning. Journal of Comparative Neurology, 1998, 396, 211-22.	0.9	24
49	Fluorescence lifetime measurements in confocal microscopy of neurons labeled with multiple fluorophores. Nature Biotechnology, 1997, 15, 373-377.	9.4	29
50	Alterations in mystacial pad innervation in the aged rat. Experimental Brain Research, 1997, 117, 324-340.	0.7	37
51	Qualitative and quantitative analysis of glycine- and GABA-immunoreactive nerve terminals on motoneuron cell bodies in the cat spinal cord: A postembedding electron microscopic study. , 1996, 365, 413-426.		88
52	Neuropeptides and neurotrophin receptor mRNAs primary sensory neurons of aged rats. Journal of Comparative Neurology, 1996, 375, 303-320.	0.9	90
53	Decreased Expression of TrkB and TrkC mRNAs in Spinal Motoneurons of Aged Rats. European Journal of Neuroscience, 1996, 8, 494-499.	1.2	39
54	Qualitative and quantitative analysis of glycine- and GABA-immunoreactive nerve terminals on motoneuron cell bodies in the cat spinal cord: A postembedding electron microscopic study. , 1996, 365, 413.		1

#	Article	IF	CITATIONS
55	Neuropeptides and neurotrophin receptor mRNAs primary sensory neurons of aged rats. , 1996, 375, 303.		1
56	Improved fluorophore separation with IMS confocal microscopy. NeuroReport, 1995, 6, 1169-1173.	0.6	8
57	la boutons to CCN neurones and motoneurones are enriched with glutamate-like immunoreactivity. NeuroReport, 1995, 6, 1975-1980.	0.6	33
58	Increase in α-CGRP and GAP-43 in aged motoneurons: A study of peptides, growth factors, and ChAT mRNA in the lumbar spinal cord of senescent rats with symptoms of hindlimb incapacities. Journal of Comparative Neurology, 1995, 359, 69-89.	0.9	53
59	Increased expression of serotonin transporter messenger RNA in raphe neurons of the aged rat. Molecular Brain Research, 1995, 33, 87-96.	2.5	27
60	Spectra and fluorescence lifetimes of lissamine rhodamine, tetramethylrhodamine isothiocyanate, texas red, and cyanine 3.18 fluorophores: influences of some environmental factors recorded with a confocal laser scanning microscope Journal of Histochemistry and Cytochemistry, 1995, 43, 699-707.	1.3	49
61	Enkephalin-, thyrotropin-releasing hormone- and substance P-immunoreactive axonal innervation of the ventrolateral dendritic bundle in the cat sacral spinal cord: An ultrastructural study. Journal of Chemical Neuroanatomy, 1994, 7, 203-215.	1.0	7
62	Quantitative and qualitative aspects on the distribution of 5-HT and its coexistence with substance P and TRH in cat ventral medullary neurons. Journal of Chemical Neuroanatomy, 1994, 7, 3-12.	1.0	35
63	Serotoninergic, peptidergic and GABAergic innervation of the ventrolateral and dorsolateral motor nuclei in the cat S1/S2 segments: An immunofluorescence study. Journal of Chemical Neuroanatomy, 1994, 7, 87-103.	1.0	18
64	GABA-like immunoreactive innervation and dendro-dendritic contacts in the ventrolateral dendritic bundle in the cat S1 spinal cord segment: an electron microscopic study. Experimental Brain Research, 1993, 97, 1-12.	0.7	34
65	Immunocytochemical localization of amino acid neurotransmitter candidates in the ventral horn of the cat spinal cord: a light microscopic study. Experimental Brain Research, 1993, 96, 404-18.	0.7	62
66	The serotoninergic bulbospinal system and brainstern-spinal cord content of serotonin-, TRH-, and substance P-like immunoreactivity in the aged rat with special reference to the spinal cord motor nucleus. Synapse, 1993, 15, 63-89.	0.6	60
67	GAP-43, aFGF, CCK and α- and β-CGRP in Rat Spinal Motoneurons Subjected to Axotomy and/or Dorsal Root Severance. European Journal of Neuroscience, 1993, 5, 1321-1333.	1.2	61
68	The Size, Number, and Fluorescence Intensity of 5HT-Immunoreactive Axon Terminals in the Aged Rat Lumbar Spinal Cord Motor Nucleus as Revealed by Confocal Fluorescence Microscopy and Computerized 3D Image Analysis. Methods, 1993, 2, 101-112.	0.5	1
69	The peptidergic motoneurone. NeuroReport, 1993, 4, 849-856.	0.6	39
70	Galanin- and CGRP-like immunoreactivity coexist in rat spinal motoneurons. NeuroReport, 1992, 3, 303-306.	0.6	21
71	Calcitonin Gene-Related Peptide in the Brain, Spinal Cord, and Some Peripheral Systems. Annals of the New York Academy of Sciences, 1992, 657, 119-134.	1.8	113
72	Reappearance of calcitonin gene-related peptide-like immunoreactivity in the dorsal horn in long-term dorsal root transected rat. Brain Research, 1992, 585, 400-404.	1.1	16

#	Article	IF	CITATIONS
73	Distribution of calbindin D28k-like immunoreactivity (LI) in the monkey ventral horn: do Renshaw cells contain calbindin D28k-LI?. Journal of Neuroscience, 1992, 12, 718-728.	1.7	40
74	A parsimonious description of motoneuron dendritic morphology using computer simulation. Journal of Neuroscience, 1992, 12, 2403-2416.	1.7	96
75	Expression of GAP-43 mRNA in the adult mammalian spinal cord under normal conditions and after different types of lesions, with special reference to motoneurons. Experimental Brain Research, 1992, 91, 284-95.	0.7	77
76	Distribution of enkephalin and its relation to serotonin in cat and monkey spinal cord and brain stem. Synapse, 1992, 11, 85-104.	0.6	29
77	On the Distribution of GAP-43 and its Relation to Serotonin in Adult Monkey and Cat Spinal Cord and Lower Brainstem. European Journal of Neuroscience, 1992, 4, 777-784.	1.2	15
78	Anatomy of dendrites in motoneurons supplying the intrinsic muscles of the foot sole in the aged cat: Evidence for dendritic growth and neo-synaptogenesis. Journal of Comparative Neurology, 1992, 316, 1-16.	0.9	37
79	Thyrotropin-releasing hormone (TRH)-like immunoreactivity in the grey monkey (Macaca fascicularis) spinal cord and medulla oblongata with special emphasis on the bulbospinal tract. Journal of Comparative Neurology, 1992, 322, 293-310.	0.9	14
80	Confocal Fluorescence Microscopy in Three-Dimensional Analysis of Axon Terminal Distribution, Neuronal Connectivity, and Colocalization of Messenger Molecules in Nervous Tissue: Computerized Analysis. Methods in Neurosciences, 1992, , 94-128.	0.5	1
81	Calcitonin gene-related peptide in monkey spinal cord and medulla oblongata. Brain Research, 1991, 558, 330-334.	1.1	20
82	Postnatal development of cat hind limb motoneurons supplying the intrinsic muscles of the foot sole. Developmental Brain Research, 1991, 62, 189-202.	2.1	21
83	Imaging of fluorescent neurons labelled with fluoro-gold and fluorescent axon terminals labelled with AMCA (7-amino-4-methylcoumarine-3-acetic acid) conjugated antiserum using a UV-laser confocal scanning microscope. Journal of Neuroscience Methods, 1991, 40, 39-48.	1.3	17
84	Calcitonin Gene-related Peptide (CGRP)-like Immunoreactivity and CGRP mRNA in Rat Spinal Cord Motoneurons after Different Types of Lesions. European Journal of Neuroscience, 1991, 3, 737-757.	1.2	67
85	Distribution of125I-galanin binding sites, immunoreactive galanin, and its coexistence with 5-hydroxytryptamine in the cat spinal cord: Biochemical, histochemical, and experimental studies at the light and electron microscopic level. Journal of Comparative Neurology, 1991, 308, 115-138.	0.9	47
86	Changes in size and shape during histochemical preparation for light and electron microscopy of neurons intracellularly labelled with horseradish peroxidase. Acta Physiologica Scandinavica, 1990, 140, 501-506.	2.3	12
87	5-Hydroxytryptamine, substance P, and thyrotropin-releasing hormone in the adult cat spinal cord segment L7: Immunohistochemical and chemical studies. Synapse, 1990, 6, 237-270.	0.6	79
88	Anatomy of soleus ?-motoneurone dendrites in normal cats and in cats subjected to chronic postnatal tenotomy or overload of the soleus muscle. Experimental Brain Research, 1990, 80, 34-43.	0.7	9
89	Peripheral nerve section induces increased levels of calcitonin gene-related peptide (CGRP)-like immunoreactivity in axotomized motoneurons. Experimental Brain Research, 1990, 79, 212-6.	0.7	93
90	Regeneration after spinal nerve root injury. Restorative Neurology and Neuroscience, 1990, 1, 289-295.	0.4	20

#	Article	IF	CITATIONS
91	Computerized quantification of immunofluorescence-labeled axon terminals and analysis of co-localization of neurochemicals in axon terminals with a confocal scanning laser microscope Journal of Histochemistry and Cytochemistry, 1990, 38, 179-190.	1.3	51
92	Enkephalin-like immunoreactivity levels increase in the motor nucleus after an intramedullar axotomy of motoneurons in the adult cat spinal cord. Brain Research, 1990, 534, 352-356.	1.1	11
93	Evidence for coexistence between calcitonin gene-related peptide and serotonin in the bulbospinal pathway in the monkey. Brain Research, 1990, 532, 47-57.	1.1	33
94	Nerve fibre regeneration across the PNS-CNS interface at the root-spinal cord junction. Brain Research Bulletin, 1989, 22, 93-102.	1.4	65
95	Motoneurons reinnervate skeletal muscle after ventral root implantation into the spinal cord of the cat. Neuroscience, 1989, 29, 725-733.	1.1	113
96	Altered levels of calcitonin gene-related peptide (CGRP)-like immunoreactivity of cat lumbar motoneurons after chronic spinal cord transection. Brain Research, 1989, 489, 387-391.	1.1	65
97	SECTION II. SYNAPTIC ROLE OF TRH: Distribution of TRH-like Immunoreactivity with Special Reference to Coexistence with Other Neuroactive Compounds. Annals of the New York Academy of Sciences, 1989, 553, 76-105.	1.8	69
98	The effects of tenotomy and overload on the postnatal development of muscle fibre histochemistry in the cat triceps surae. Acta Physiologica Scandinavica, 1988, 132, 353-362.	2.3	8
99	Postnatal development of cat hind limb motoneurons. I: Changes in length, branching structure, and spatial distribution of dendrites of cat triceps surae motoneurons. Journal of Comparative Neurology, 1988, 278, 69-87.	0.9	56
100	Postnatal development of cat hind limb motoneurons. II: In vivo morphology of dendritic growth cones and the maturation of dendrite morphology. Journal of Comparative Neurology, 1988, 278, 88-102.	0.9	47
101	Postnatal development of cat hind limb motoneurons. Ill: Changes in size of motoneurons supplying the triceps surae muscle. Journal of Comparative Neurology, 1988, 278, 103-120.	0.9	96
102	Tachykinins in the central nervous system. Regulatory Peptides, 1988, 22, 6-8.	1.9	1
103	Chapter 29 Mammalian root-spinal cord regeneration. Progress in Brain Research, 1988, 78, 225-229.	0.9	15
104	The combined use of immunohistochemistry and intracellular staining with horseradish peroxidase for light and electron microscopic studies of transmitter-identified inputs to functionally characterized neurons. Brain Research, 1987, 419, 387-391.	1.1	16
105	An ultrastructural study of 5-hydroxytryptamine-, thyrotropin-releasing hormone- and substance P-immunoreactive axonal boutons in the motor nucleus of spinal cord segments L7-S1 in the adult cat. Neuroscience, 1987, 23, 917-929.	1.1	107
106	Thyrotropin-releasing hormone (TRH)-immunoreactive boutons and nerve cell bodies in the dorsal horn of the cat L7 spinal cord. Neuroscience Letters, 1987, 73, 3-8.	1.0	27
107	Ultrastructural observations on beaded αâ€motoneuron dendrites. Acta Physiologica Scandinavica, 1987, 129, 61-66.	2.3	13
108	Electron microscopic observations on recurrent axon collateral boutons of a triceps surae Î ³ -motoneuron in the cat. Neuroscience Letters, 1986, 63, 27-32.	1.0	5

BRUN ULFHAKE

#	Article	IF	CITATIONS
109	Electron microscopic observations on the synaptology of cat sciatic Î ³ -motoneurons after intracellular staining with horseradish peroxidase. Neuroscience Letters, 1986, 70, 23-27.	1.0	21
110	The effects of tenotomy and compensatory hypertrophy on the postnatal development of soleus motor units in the cat. Acta Physiologica Scandinavica, 1986, 126, 565-573.	2.3	6
111	The effects of tenotomy and overload on the postnatal development of medial gastrocnemius motor units in the cat. Acta Physiologica Scandinavica, 1986, 128, 485-494.	2.3	4
112	A morphometric study of the soma, first-order dendrites and proximal axon of cat lumbar ?-motoneurones intracellularly labelled with HRP. Experimental Brain Research, 1984, 56, 327-34.	0.7	33
113	Electrophysiological and morphological measurements in cat gastrocnemius and soleus α-motoneurones. Brain Research, 1984, 307, 167-179.	1.1	85
114	A Quantitative morphological study of HRP-labelled cat α-motoneurones supplying different hindlimb muscles. Brain Research, 1983, 264, 1-19.	1.1	101
115	Does α-motoneurone size correlate with motor unit type in cat triceps surae?. Brain Research, 1982, 251, 201-209.	1.1	68
116	A quantitative light microscopic study of the dendrites of cat spinal α-motoneurons after intracellular staining with horseradish peroxidase. Journal of Comparative Neurology, 1981, 202, 571-583.	0.9	196
117	A quantitative light microscopic study of the dendrites of cat spinal γ-motoneurons after intracellular staining with horseradish peroxidase. Journal of Comparative Neurology, 1981, 202, 585-596.	0.9	129
118	Relations between cell body size, axon diameter and axon conduction velocity of triceps surae alpha motoneurons during the postnatal development in the cat. Journal of Comparative Neurology, 1979, 188, 679-686.	0.9	52
119	Observations on the morphology of intracellularly stained \hat{I}^3 -motoneurons in relation to their axon conduction velocity. Neuroscience Letters, 1979, 13, 47-50.	1.0	49

120 Cellular Degradation Machineries in Age-Related Loss of Muscle Mass (Sarcopenia). , 0, , .

6