Jose Cordoba-Chacon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1814724/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity. Cell Reports, 2018, 23, 3286-3299.	2.9	102
2	Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach. Molecular and Cellular Endocrinology, 2010, 317, 154-160.	1.6	101
3	Role of ghrelin system in neuroprotection and cognitive functions: Implications in Alzheimer's disease. Peptides, 2011, 32, 2225-2228.	1.2	91
4	Growth Hormone Control of Hepatic Lipid Metabolism. Diabetes, 2016, 65, 3598-3609.	0.3	90
5	Expression of the Chrelin and Neurotensin Systems is Altered in the Temporal Lobe of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2010, 22, 819-828.	1.2	89
6	Understanding the Multifactorial Control of Growth Hormone Release by Somatotropes. Annals of the New York Academy of Sciences, 2009, 1163, 137-153.	1.8	88
7	Kisspeptin Regulates Gonadotroph and Somatotroph Function in Nonhuman Primate Pituitary via Common and Distinct Signaling Mechanisms. Endocrinology, 2011, 152, 957-966.	1.4	85
8	Growth Hormone Inhibits Hepatic De Novo Lipogenesis in Adult Mice. Diabetes, 2015, 64, 3093-3103.	0.3	85
9	Obestatin regulates adipocyte function and protects against dietâ€induced insulin resistance and inflammation. FASEB Journal, 2012, 26, 3393-3411.	0.2	79
10	A Novel Human Ghrelin Variant (In1-Ghrelin) and Ghrelin-O-Acyltransferase Are Overexpressed in Breast Cancer: Potential Pathophysiological Relevance. PLoS ONE, 2011, 6, e23302.	1.1	67
11	Somatostatin and its receptors from fish to mammals. Annals of the New York Academy of Sciences, 2010, 1200, 43-52.	1.8	66
12	Hepatocyte-specific, PPARÎ ³ -regulated mechanisms to promote steatosis in adult mice. Journal of Endocrinology, 2017, 232, 107-121.	1.2	66
13	The new truncated somatostatin receptor variant sst5TMD4 is associated to poor prognosis in breast cancer and increases malignancy in MCF-7 cells. Oncogene, 2012, 31, 2049-2061.	2.6	65
14	Metabolic Impact of Adult-Onset, Isolated, Growth Hormone Deficiency (AOiGHD) Due to Destruction of Pituitary Somatotropes. PLoS ONE, 2011, 6, e15767.	1.1	60
15	Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents. Cellular and Molecular Life Sciences, 2010, 67, 1147-1163.	2.4	59
16	Cortistatin Is Not a Somatostatin Analogue but Stimulates Prolactin Release and Inhibits GH and ACTH in a Gender-Dependent Fashion: Potential Role of Ghrelin. Endocrinology, 2011, 152, 4800-4812.	1.4	59
17	Adiponectin in mice with altered GH action: links to insulin sensitivity and longevity?. Journal of Endocrinology, 2013, 216, 363-374.	1.2	48
18	Truncated somatostatin receptors as new players in somatostatin–cortistatin pathophysiology. Annals of the New York Academy of Sciences, 2011, 1220, 6-15.	1.8	45

Jose Cordoba-Chacon

#	Article	IF	CITATIONS
19	Insulin and IGF-I Inhibit GH Synthesis and Release in Vitro and in Vivo by Separate Mechanisms. Endocrinology, 2013, 154, 2410-2420.	1.4	45
20	Somatostatin Dramatically Stimulates Growth Hormone Release from Primate Somatotrophs Acting at Low Doses Via Somatostatin Receptor 5 and Cyclic AMP. Journal of Neuroendocrinology, 2012, 24, 453-463.	1.2	42
21	Hepatic HKDC1 Expression Contributes to Liver Metabolism. Endocrinology, 2019, 160, 313-330.	1.4	40
22	Somatostatin and its receptors contribute in a tissue-specific manner to the sex-dependent metabolic (fed/fasting) control of growth hormone axis in mice. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E46-E54.	1.8	34
23	Elevated GH/IGF-I, Due to Somatotrope-Specific Loss of Both IGF-I and Insulin Receptors, Alters Glucose Homeostasis and Insulin Sensitivity in a Diet-Dependent Manner. Endocrinology, 2011, 152, 4825-4837.	1.4	32
24	The Rise in Growth Hormone during Starvation Does Not Serve to Maintain Glucose Levels or Lean Mass but Is Required for Appropriate Adipose Tissue Response in Female Mice. Endocrinology, 2013, 154, 263-269.	1.4	32
25	Hepatocyte-Specific Loss of PPARÎ ³ Protects Mice From NASH and Increases the Therapeutic Effects of Rosiglitazone in the Liver. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1291-1311.	2.3	32
26	Growth Hormone and Insulin-Like Growth Factor 1 Regulation of Nonalcoholic Fatty Liver Disease. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1812-1824.	1.8	32
27	Long- But Not Short-Term Adult-Onset, Isolated GH Deficiency in Male Mice Leads to Deterioration of β-Cell Function, Which Cannot Be Accounted for by Changes in β-Cell Mass. Endocrinology, 2014, 155, 726-735.	1.4	24
28	Does the pituitary somatotrope play a primary role in regulating GH output in metabolic extremes?. Annals of the New York Academy of Sciences, 2011, 1220, 82-92.	1.8	23
29	Differential impact of selective GH deficiency and endogenous GH excess on insulin-mediated actions in muscle and liver of male mice. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E928-E934.	1.8	23
30	p110γ deficiency protects against pancreatic carcinogenesis yet predisposes to diet-induced hepatotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14724-14733.	3.3	22
31	Hepatic hexokinase domain containing 1 (HKDC1) improves whole body glucose tolerance and insulin sensitivity in pregnant mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 678-687.	1.8	21
32	Impact of <i>gsp</i> Oncogene on the mRNA Content for Somatostatin and Dopamine Receptors in Human Somatotropinomas. Neuroendocrinology, 2011, 93, 40-47.	1.2	19
33	GH directly inhibits steatosis and liver injury in a sex-dependent and IGF1-independent manner. Journal of Endocrinology, 2021, 248, 31-44.	1.2	19
34	Peripubertal-onset but not adult-onset obesity increases IGF-I and drives development of lean mass, which may lessen the metabolic impairment in adult obesity. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1151-E1157.	1.8	18
35	Hepatic PPARÎ ³ Is Not Essential for the Rapid Development of Steatosis After Loss of Hepatic GH Signaling, in Adult Male Mice. Endocrinology, 2016, 157, 1728-1735.	1.4	18
36	Homologous and Heterologous in Vitro Regulation of Pituitary Receptors for Somatostatin, Growth Hormone (GH)-Releasing Hormone, and Ghrelin in a Nonhuman Primate (Papio anubis). Endocrinology, 2012, 153, 264-272.	1.4	17

#	Article	IF	CITATIONS
37	Adult-Onset Hepatocyte GH Resistance Promotes NASH in Male Mice, Without Severe Systemic Metabolic Dysfunction. Endocrinology, 2018, 159, 3761-3774.	1.4	17
38	Use of the Metallothionein Promoter-Human Growth Hormone-Releasing Hormone (GHRH) Mouse to Identify Regulatory Pathways that Suppress Pituitary Somatotrope Hyperplasia and Adenoma Formation due to GHRH-Receptor Hyperactivation. Endocrinology, 2009, 150, 3177-3185.	1.4	16
39	Melatonin Regulates Somatotrope and Lactotrope Function Through Common and Distinct Signaling Pathways in Cultured Primary Pituitary Cells From Female Primates. Endocrinology, 2015, 156, 1100-1110.	1.4	16
40	Rosiglitazone Requires Hepatocyte PPARÎ ³ Expression to Promote Steatosis in Male Mice With Diet-Induced Obesity. Endocrinology, 2021, 162, .	1.4	16
41	Obestatin Plays an Opposite Role in the Regulation of Pituitary Somatotrope and Corticotrope Function in Female Primates and Male/Female Mice. Endocrinology, 2014, 155, 1407-1417.	1.4	15
42	Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice. Carcinogenesis, 2014, 35, 2467-2473.	1.3	12
43	Obesity- and gender-dependent role of endogenous somatostatin and cortistatin in the regulation of endocrine and metabolic homeostasis in mice. Scientific Reports, 2016, 6, 37992.	1.6	12
44	Loss of Hepatocyte-Specific PPAR <i>γ</i> Expression Ameliorates Early Events of Steatohepatitis in Mice Fed the Methionine and Choline-Deficient Diet. PPAR Research, 2020, 2020, 1-13.	1.1	12
45	Tissue-dependent effects of cis-9,trans-11- and trans-10,cis-12-CLA isomers on glucose and lipid metabolism in adult male mice. Journal of Nutritional Biochemistry, 2019, 67, 90-100.	1.9	11
46	Islet insulin content and release are increased in male mice with elevated endogenous GH and IGF-I, without evidence of systemic insulin resistance or alterations in β-cell mass. Growth Hormone and IGF Research, 2015, 25, 189-195.	0.5	10
47	Cortistatin Is a Key Factor Regulating the Sex-Dependent Response of the GH and Stress Axes to Fasting in Mice. Endocrinology, 2016, 157, 2810-2823.	1.4	9
48	Role of Endogenous Cortistatin in the Regulation of Ghrelin System Expression at Pancreatic Level under Normal and Obese Conditions. PLoS ONE, 2013, 8, e57834.	1.1	8
49	Not So Giants: Mice Lacking Both Somatostatin and Cortistatin Have High GH Levels but Show No Changes in Growth Rate or IGF-1 Levels. Endocrinology, 2015, 156, 1958-1964.	1.4	8
50	Sexual dimorphic impact of adultâ€onset somatopause on life span and ageâ€induced osteoarthritis. Aging Cell, 2021, 20, e13427.	3.0	8
51	Endogenous Somatostatin Is Critical in Regulating the Acute Effects of l-Arginine on Growth Hormone and Insulin Release in Mice. Endocrinology, 2013, 154, 2393-2398.	1.4	7
52	Obesity Alters Gene Expression for GH/IGF-I Axis in Mouse Mammary Fat Pads: Differential Role of Cortistatin and Somatostatin. PLoS ONE, 2015, 10, e0120955.	1.1	7
53	Fasting modulates GH/IGF-I axis and its regulatory systems in the mammary gland of female mice: Influence of endogenous cortistatin. Molecular and Cellular Endocrinology, 2016, 434, 14-24.	1.6	3
54	Adipose expression of CREB3L3 modulates body weight during obesity. Scientific Reports, 2021, 11, 19400.	1.6	2

#	Article	IF	CITATIONS
55	HepatocyteGHR/STAT5b Signaling Protects Against Liver Injury in NAFLD/NASH Mice Models Independent of Steatosis. Journal of the Endocrine Society, 2021, 5, A48-A49.	0.1	0