Jean-Claude Farré

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1813939/publications.pdf

Version: 2024-02-01

		279487	344852
37	5,246	23	36
papers	citations	h-index	g-index
39	39	39	11082
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recognition and Chaperoning by Pex19, Followed by Trafficking and Membrane Insertion of the Peroxisome Proliferation Protein, Pex11. Cells, 2022, 11, 157.	1.8	5
2	OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway. ELife, 2022, 11 , .	2.8	4
3	Balancing the Opposing Principles That Govern Peroxisome Homeostasis. Trends in Biochemical Sciences, 2021, 46, 200-212.	3.7	18
4	BiFC Method Based on Intraorganellar Protein Crowding Detects Oleate-Dependent Peroxisomal Targeting of Pichia pastoris Malate Dehydrogenase. International Journal of Molecular Sciences, 2021, 22, 4890.	1.8	2
5	The autophagic degradation of cytosolic pools of peroxisomal proteins by a new selective pathway. Autophagy, 2020, 16, 154-166.	4.3	13
6	Peroxisome biogenesis, membrane contact sites, and quality control. EMBO Reports, 2019, 20, .	2.0	107
7	TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy, 2018, 14, 1574-1585.	4.3	35
8	Active Interaction Mapping Reveals the Hierarchical Organization of Autophagy. Molecular Cell, 2017, 65, 761-774.e5.	4.5	31
9	Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes. Autophagy, 2017, 13, 1248-1249.	4.3	1
10	A New Yeast Peroxin, Pex36, a Functional Homolog of Mammalian PEX16, Functions in the ER-to-Peroxisome Traffic of Peroxisomal Membrane Proteins. Journal of Molecular Biology, 2017, 429, 3743-3762.	2.0	28
11	TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. Journal of Cell Biology, 2017, 216, 2843-2858.	2.3	64
12	Mechanistic insights into selective autophagy pathways: lessons from yeast. Nature Reviews Molecular Cell Biology, 2016, 17, 537-552.	16.1	323
13	Peroxisomal Pex3 Activates Selective Autophagy of Peroxisomes via Interaction with the Pexophagy Receptor Atg30. Journal of Biological Chemistry, 2015, 290, 8623-8631.	1.6	46
14	Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Reports, 2013, 14, 441-449.	2.0	144
15	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
16	RNA Editing in Mitochondrial Trans-Introns Is Required for Splicing. PLoS ONE, 2012, 7, e52644.	1.1	43
17	Rallying the Exocyst as an Autophagy Scaffold. Cell, 2011, 144, 172-174.	13.5	15
18	Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in <i>Pichia pastoris</i> . Autophagy, 2011, 7, 375-385.	4.3	43

#	Article	IF	Citations
19	Molecular mechanism and physiological role of pexophagy. FEBS Letters, 2010, 584, 1367-1373.	1.3	120
20	A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. Journal of Cell Biology, 2010, 189, 303-310.	2.3	66
21	Roles of <i>Pichia pastoris < i>Uvrag in vacuolar protein sorting and the phosphatidylinositol 3-kinase complex in phagophore elongation in autophagy pathways. Autophagy, 2010, 6, 86-99.</i>	4.3	26
22	Turnover of organelles by autophagy in yeast. Current Opinion in Cell Biology, 2009, 21, 522-530.	2.6	112
23	Peroxisome Size Provides Insights into the Function of Autophagy-related Proteins. Molecular Biology of the Cell, 2009, 20, 3828-3839.	0.9	67
24	PpAtg30 Tags Peroxisomes for Turnover by Selective Autophagy. Developmental Cell, 2008, 14, 365-376.	3.1	304
25	Autophagy-Related Pathways and Specific Role of Sterol Glucoside in Yeasts. Autophagy, 2007, 3, 263-265.	4.3	15
26	A Cytoplasm to Vacuole Targeting Pathway in <i>P. pastoris </i> . Autophagy, 2007, 3, 230-234.	4.3	33
27	In Organello Gene Expression and RNA Editing Studies by Electroporation-Mediated Transformation of Isolated Plant Mitochondria. Methods in Enzymology, 2007, 424, 483-500.	0.4	10
28	A Ubiquitin-like Protein Involved in Membrane Fusion. Cell, 2007, 130, 18-20.	13.5	14
29	Atg28, a Novel Coiled-Coil Protein Involved in Autophagic Degradation of Peroxisomes in the Methylotrophic Yeast Pichia pastoris. Autophagy, 2006, 2, 30-38.	4.3	49
30	Gene expression studies in isolated mitochondria: Solanum tuberosum rps10 is recognized by cognate potato but not by the transcription, splicing and editing machinery of wheat mitochondria. Nucleic Acids Research, 2005, 33, 7058-7065.	6.5	22
31	Different patterns in the recognition of editing sites in plant mitochondria. Nucleic Acids Research, 2004, 32, 6397-6406.	6.5	54
32	Peroxisome turnover by micropexophagy: an autophagy-related process. Trends in Cell Biology, 2004, 14, 515-523.	3.6	160
33	Réécriture du matériel génétique : fonctions et mécanismes de l'édition de l'ARN. Mede 2002, 18, 181-192.	cine/Scien	ces,
34	RNA splicing in higher plant mitochondria: determination of functional elements in group II intron from a chimericcox Ilgene in electroporated wheat mitochondria. Plant Journal, 2002, 29, 203-213.	2.8	32
35	Gene expression in isolated plant mitochondria: high fidelity of transcription, splicing and editing of a transgene product in electroporated organelles. Nucleic Acids Research, 2001, 29, 2484-2491.	6.5	66
36	The mat-r open reading frame is transcribed from a non-canonical promoter and contains an internal promoter to co-transcribe exons nad1e and nad5III in wheat mitochondria., 1999, 40, 959-967.		26

#	Article	IF	CITATIONS
37	Editing status of mat-r transcripts in mitochondria from two plant species: C-to-U changes occur in putative functional RT and maturase domains. Current Genetics, 1998, 33, 420-428.	0.8	25