Scott J Hultgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1813897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Establishing the role of the gut microbiota in susceptibility to recurrent urinary tract infections. Journal of Clinical Investigation, 2022, 132, .	3.9	17
2	StrainGE: a toolkit to track and characterize low-abundance strains in complex microbial communities. Genome Biology, 2022, 23, 74.	3.8	35
3	Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in women. Nature Microbiology, 2022, 7, 630-639.	5.9	54
4	Limited effects of long-term daily cranberry consumption on the gut microbiome in a placebo-controlled study of women with recurrent urinary tract infections. BMC Microbiology, 2021, 21, 53.	1.3	21
5	A host receptor enables type 1 pilus-mediated pathogenesis of Escherichia coli pyelonephritis. PLoS Pathogens, 2021, 17, e1009314.	2.1	19
6	Deposition of Host Matrix Proteins on Breast Implant Surfaces Facilitates <i>Staphylococcus Epidermidis</i> Biofilm Formation: In Vitro Analysis. Aesthetic Surgery Journal, 2020, 40, 281-295.	0.9	21
7	Establishment and Characterization of Bacterial Infection of Breast Implants in a Murine Model. Aesthetic Surgery Journal, 2020, 40, 516-528.	0.9	13
8	High-resolution imaging reveals microbial biofilms on patient urinary catheters despite antibiotic administration. World Journal of Urology, 2020, 38, 2237-2245.	1.2	22
9	Adaptation of Arginine Synthesis among Uropathogenic Branches of the Escherichia coli Phylogeny Reveals Adjustment to the Urinary Tract Habitat. MBio, 2020, 11, .	1.8	12
10	Reaching the End of the Line. , 2020, , 83-99.		6
11	Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nature Reviews Microbiology, 2020, 18, 211-226.	13.6	258
12	Insights into the Microbiome of Breast Implants and Periprosthetic Tissue in Breast Implant-Associated Anaplastic Large Cell Lymphoma. Scientific Reports, 2019, 9, 10393.	1.6	76
13	Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes. Nature Communications, 2019, 10, 2763.	5.8	80
14	Reaching the End of the Line: Urinary Tract Infections. Microbiology Spectrum, 2019, 7, .	1.2	50
15	Fimbriae reprogram host gene expression – Divergent effects of P and type 1 fimbriae. PLoS Pathogens, 2019, 15, e1007671.	2.1	17
16	Chemical disarming of isoniazid resistance in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10510-10517.	3.3	48
17	The Detection of Bacteria and Matrix Proteins on Clinically Benign and Pathologic Implants. Plastic and Reconstructive Surgery - Global Open, 2019, 7, e2037.	0.3	24
18	Biphenyl Gal and GalNAc FmlH Lectin Antagonists of Uropathogenic <i>E. coli</i> (UPEC): Optimization through Iterative Rational Drug Design. Journal of Medicinal Chemistry, 2019, 62, 467-479.	2.9	18

#	Article	IF	CITATIONS
19	Mucosal infection rewires TNFÉ' signaling dynamics to skew susceptibility to recurrence. ELife, 2019, 8, .	2.8	24
20	Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2819-E2828.	3.3	63
21	Precision antimicrobial therapeutics: the path of least resistance?. Npj Biofilms and Microbiomes, 2018, 4, 4.	2.9	69
22	Hydrogen Sulfide Sensing through Reactive Sulfur Species (RSS) and Nitroxyl (HNO) in <i>Enterococcus faecalis</i> . ACS Chemical Biology, 2018, 13, 1610-1620.	1.6	37
23	Host restriction of Escherichia coli recurrent urinary tract infection occurs in a bacterial strain-specific manner. PLoS Pathogens, 2018, 14, e1007457.	2.1	32
24	Manganese acquisition is essential for virulence of Enterococcus faecalis. PLoS Pathogens, 2018, 14, e1007102.	2.1	63
25	Structural basis for usher activation and intramolecular subunit transfer in P pilus biogenesis in Escherichia coli. Nature Microbiology, 2018, 3, 1362-1368.	5.9	17
26	Structure-Function Analysis of the Curli Accessory Protein CsgE Defines Surfaces Essential for Coordinating Amyloid Fiber Formation. MBio, 2018, 9, .	1.8	33
27	Differential Regulation of <i>Escherichia coli fim</i> Genes following Binding to Mannose Receptors. Journal of Pathogens, 2018, 2018, 1-8.	0.9	13
28	Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. ELife, 2018, 7, .	2.8	70
29	Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions. Science Advances, 2017, 3, e1601944.	4.7	50
30	Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature, 2017, 546, 528-532.	13.7	231
31	Bacterial virulence phenotypes of <i>Escherichia coli</i> and host susceptibility determine risk for urinary tract infections. Science Translational Medicine, 2017, 9, .	5.8	139
32	Catheterization alters bladder ecology to potentiate <i>Staphylococcus aureus</i> infection of the urinary tract. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8721-E8730.	3.3	93
33	Correlative Light, Electron, and Ion Microscopy for the Study of Urinary Tract Infection Pathogenesis. Microscopy and Microanalysis, 2017, 23, 1308-1309.	0.2	0
34	Host and bacterial proteases influence biofilm formation and virulence in a murine model of enterococcal catheter-associated urinary tract infection. Npj Biofilms and Microbiomes, 2017, 3, 28.	2.9	48
35	A mucosal imprint left by prior Escherichia coli bladder infection sensitizes to recurrent disease. Nature Microbiology, 2017, 2, 16196.	5.9	67
36	Narrowing the spectrum: the new frontier of precision antimicrobials. Genome Medicine, 2017, 9, 110.	3.6	36

#	Article	IF	CITATIONS
37	Highly conserved type 1 pili promote enterotoxigenic E. coli pathogen-host interactions. PLoS Neglected Tropical Diseases, 2017, 11, e0005586.	1.3	42
38	One size doesn't fit all: unraveling the diversity of factors and interactions that drive E. coli urovirulence. Annals of Translational Medicine, 2017, 5, 28-28.	0.7	11
39	Innovative Solutions to Sticky Situations: Antiadhesive Strategies for Treating Bacterial Infections. , 2016, , 753-795.		0
40	Adhesive Pili in UTI Pathogenesis and Drug Development. Pathogens, 2016, 5, 30.	1.2	66
41	Antivirulence Isoquinolone Mannosides: Optimization of the Biaryl Aglycone for FimH Lectin Binding Affinity and Efficacy in the Treatment of Chronic UTI. ChemMedChem, 2016, 11, 367-373.	1.6	53
42	Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. Microbiology Spectrum, 2016, 4, .	1.2	87
43	Innovative Solutions to Sticky Situations: Antiadhesive Strategies for Treating Bacterial Infections. Microbiology Spectrum, 2016, 4, .	1.2	4
44	Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis. MBio, 2016, 7, e00104-16.	1.8	89
45	The Catabolite Repressor Protein-Cyclic AMP Complex Regulates csgD and Biofilm Formation in Uropathogenic Escherichia coli. Journal of Bacteriology, 2016, 198, 3329-3334.	1.0	44
46	Inflammation-Induced Adhesin-Receptor Interaction Provides a Fitness Advantage to Uropathogenic E.Âcoli during Chronic Infection. Cell Host and Microbe, 2016, 20, 482-492.	5.1	53
47	Antivirulence <i>C</i> -Mannosides as Antibiotic-Sparing, Oral Therapeutics for Urinary Tract Infections. Journal of Medicinal Chemistry, 2016, 59, 9390-9408.	2.9	84
48	Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. MBio, 2016, 7, .	1.8	48
49	Solution NMR structure of CsgE: Structural insights into a chaperone and regulator protein important for functional amyloid formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7130-7135.	3.3	22
50	Structure of a Chaperone-Usher Pilus Reveals the Molecular Basis of Rod Uncoiling. Cell, 2016, 164, 269-278.	13.5	61
51	Fibrinogen Release and Deposition on Urinary Catheters Placed during Urological Procedures. Journal of Urology, 2016, 196, 416-421.	0.2	68
52	Establishment and Characterization of UTI and CAUTI in a Mouse Model. Journal of Visualized Experiments, 2015, , e52892.	0.2	22
53	Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection. Current Opinion in Infectious Diseases, 2015, 28, 97-105.	1.3	42
54	Subinhibitory Antibiotic Therapy Alters Recurrent Urinary Tract Infection Pathogenesis through Modulation of Bacterial Virulence and Host Immunity. MBio, 2015, 6, .	1.8	52

#	Article	IF	CITATIONS
55	Chaos Controlled: Discovery of a Powerful Amyloid Inhibitor. Molecular Cell, 2015, 57, 391-393.	4.5	4
56	Dysregulation of <i>Escherichia coli</i> α-hemolysin expression alters the course of acute and persistent urinary tract infection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E871-80.	3.3	132
57	Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection. PLoS Pathogens, 2015, 11, e1004818.	2.1	62
58	Fueling the Fire with Fibers: Bacterial Amyloids Promote Inflammatory Disorders. Cell Host and Microbe, 2015, 18, 1-2.	5.1	33
59	A 2-Pyridone-Amide Inhibitor Targets the Glucose Metabolism Pathway of Chlamydia trachomatis. MBio, 2015, 6, e02304-14.	1.8	22
60	Advanced glycation end products facilitate bacterial adherence in urinary tract infection in diabetic mice. Pathogens and Disease, 2015, 73, .	0.8	17
61	The pilus usher controls protein interactions via domain masking and is functional as an oligomer. Nature Structural and Molecular Biology, 2015, 22, 540-546.	3.6	27
62	Uropathogenic Escherichia coli Superinfection Enhances the Severity of Mouse Bladder Infection. PLoS Pathogens, 2015, 11, e1004599.	2.1	46
63	Impaired cytokine expression, neutrophil infiltration and bacterial clearance in response to urinary tract infection in diabetic mice. Pathogens and Disease, 2015, 73, .	0.8	19
64	Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Reviews Microbiology, 2015, 13, 269-284.	13.6	2,406
65	Bacterial Amyloid Formation: Structural Insights into Curli Biogensis. Trends in Microbiology, 2015, 23, 693-706.	3.5	148
66	Human Urine Decreases Function and Expression of Type 1 Pili in Uropathogenic Escherichia coli. MBio, 2015, 6, e00820.	1.8	58
67	EbpA vaccine antibodies block binding of <i>Enterococcus faecalis</i> to fibrinogen to prevent catheter-associated bladder infection in mice. Science Translational Medicine, 2014, 6, 254ra127.	5.8	130
68	Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis. EBioMedicine, 2014, 1, 46-57.	2.7	92
69	Pilicide ec240 Disrupts Virulence Circuits in Uropathogenic Escherichia coli. MBio, 2014, 5, e02038.	1.8	65
70	From Physiology to Pharmacy: Developments in the Pathogenesis and Treatment of Recurrent Urinary Tract Infections. Current Urology Reports, 2013, 14, 448-456.	1.0	65
71	Molecular basis of usher pore gating in <i>Escherichia coli</i> pilus biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20741-20746.	3.3	27
72	Enterococcus faecalis Overcomes Foreign Body-Mediated Inflammation To Establish Urinary Tract Infections. Infection and Immunity, 2013, 81, 329-339.	1.0	84

#	Article	IF	CITATIONS
73	Structural and energetic basis of folded-protein transport by the FimD usher. Nature, 2013, 496, 243-246.	13.7	88
74	Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15530-15537.	3.3	105
75	Genomic Diversity and Fitness of <i>E. coli</i> Strains Recovered from the Intestinal and Urinary Tracts of Women with Recurrent Urinary Tract Infection. Science Translational Medicine, 2013, 5, 184ra60.	5.8	148
76	Strong cross-system interactions drive the activation of the QseB response regulator in the absence of its cognate sensor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16592-16597.	3.3	81
77	Domain activities of PapC usher reveal the mechanism of action of an <i>Escherichia coli</i> molecular machine. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9563-9568.	3.3	38
78	The Metal Ion-Dependent Adhesion Site Motif of the Enterococcus faecalis EbpA Pilin Mediates Pilus Function in Catheter-Associated Urinary Tract Infection. MBio, 2012, 3, e00177-12.	1.8	118
79	Lead Optimization Studies on FimH Antagonists: Discovery of Potent and Orally Bioavailable Ortho-Substituted Biphenyl Mannosides. Journal of Medicinal Chemistry, 2012, 55, 3945-3959.	2.9	112
80	Host–pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic <i>Escherichia coli</i> bladder infection. FEMS Microbiology Reviews, 2012, 36, 616-648.	3.9	296
81	Population Dynamics and Niche Distribution of Uropathogenic Escherichia coli during Acute and Chronic Urinary Tract Infection. Infection and Immunity, 2011, 79, 4250-4259.	1.0	146
82	Crystal structure of the FimD usher bound to its cognate FimC–FimH substrate. Nature, 2011, 474, 49-53.	13.7	170
83	Treatment and Prevention of Urinary Tract Infection with Orally Active FimH Inhibitors. Science Translational Medicine, 2011, 3, 109ra115.	5.8	254
84	Structure-Based Drug Design and Optimization of Mannoside Bacterial FimH Antagonists. Journal of Medicinal Chemistry, 2010, 53, 4779-4792.	2.9	220
85	The differential affinity of the usher for chaperone–subunit complexes is required for assembly of complete pili. Molecular Microbiology, 2010, 76, 159-172.	1.2	25
86	Enterococcal Biofilm Formation and Virulence in an Optimized Murine Model of Foreign Body-Associated Urinary Tract Infections. Infection and Immunity, 2010, 78, 4166-4175.	1.0	142
87	Early Severe Inflammatory Responses to Uropathogenic E. coli Predispose to Chronic and Recurrent Urinary Tract Infection. PLoS Pathogens, 2010, 6, e1001042.	2.1	223
88	Design and Synthesis of C-2 Substituted Thiazolo and Dihydrothiazolo Ring-Fused 2-Pyridones: Pilicides with Increased Antivirulence Activity. Journal of Medicinal Chemistry, 2010, 53, 5690-5695.	2.9	82
89	Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22439-22444.	3.3	165
90	Quantitative Metabolomics Reveals an Epigenetic Blueprint for Iron Acquisition in Uropathogenic Escherichia coli. PLoS Pathogens, 2009, 5, e1000305.	2.1	211

#	Article	IF	CITATIONS
91	QseCâ€mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic <i>Escherichia coli</i> . Molecular Microbiology, 2009, 73, 1020-1031.	1.2	139
92	Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nature Chemical Biology, 2009, 5, 913-919.	3.9	381
93	Structural biology of the chaperone–usher pathway of pilus biogenesis. Nature Reviews Microbiology, 2009, 7, 765-774.	13.6	298
94	A murine model of urinary tract infection. Nature Protocols, 2009, 4, 1230-1243.	5.5	254
95	<i>LeuX</i> tRNAâ€dependent and â€independent mechanisms of <i>Escherichia coli</i> pathogenesis in acute cystitis. Molecular Microbiology, 2008, 67, 116-128.	1.2	67
96	C-CSF induction early in uropathogenic <i>Escherichia coli</i> infection of the urinary tract modulates host immunity. Cellular Microbiology, 2008, 10, 2568-2578.	1.1	113
97	Fiber Formation across the Bacterial Outer Membrane by the Chaperone/Usher Pathway. Cell, 2008, 133, 640-652.	13.5	194
98	Functional Genomic Studies of Uropathogenic Escherichia coli and Host Urothelial Cells when Intracellular Bacterial Communities Are Assembled. Journal of Biological Chemistry, 2007, 282, 21259-21267.	1.6	129
99	Adaptor Function of PapF Depends on Donor Strand Exchange in P-Pilus Biogenesis of Escherichia coli. Journal of Bacteriology, 2007, 189, 5276-5283.	1.0	24
100	Escherichia coli from Urine of Female Patients with Urinary Tract Infections Is Competent for Intracellular Bacterial Community Formation. Infection and Immunity, 2007, 75, 52-60.	1.0	145
101	Detection of Intracellular Bacterial Communities in Human Urinary Tract Infection. PLoS Medicine, 2007, 4, e329.	3.9	495
102	Development of intracellular bacterial communities of uropathogenicEscherichia colidepends on type 1 pili. Cellular Microbiology, 2007, 9, 2230-2241.	1.1	288
103	Donor-Strand Exchange in Chaperone-Assisted Pilus Assembly Proceeds through a Concerted β Strand Displacement Mechanism. Molecular Cell, 2006, 22, 831-842.	4.5	159
104	Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Microbiology, 2006, 1, 75-87.	1.0	76
105	Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17897-17902.	3.3	257
106	Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14170-14175.	3.3	445
107	Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: A comparative genomics approach. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5977-5982.	3.3	509
108	Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19884-19889.	3.3	283

#	Article	IF	CITATIONS
109	Uropathogenic Escherichia coli Flagella Aid in Efficient Urinary Tract Colonization. Infection and Immunity, 2005, 73, 7657-7668.	1.0	199
110	Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1333-1338.	3.3	551
111	Intracellular Bacterial Biofilm-Like Pods in Urinary Tract Infections. Science, 2003, 301, 105-107.	6.0	976
112	Effect of Trimethoprim-Sulfamethoxazole on Recurrent Bacteriuria and Bacterial Persistence in Mice Infected with Uropathogenic Escherichia coli. Infection and Immunity, 2002, 70, 7042-7049.	1.0	145
113	Role of Escherichia coli Curli Operons in Directing Amyloid Fiber Formation. Science, 2002, 295, 851-855.	6.0	1,127
114	Design and Parallel Solid-Phase Synthesis of Ring-Fused 2-Pyridinones That Target Pilus Biogenesis in Pathogenic Bacteria. ACS Combinatorial Science, 2002, 4, 630-639.	3.3	60
115	Bacterial Outer Membrane Ushers Contain Distinct Targeting and Assembly Domains for Pilus Biogenesis. Journal of Bacteriology, 2002, 184, 6260-6269.	1.0	74
116	Chaperone Priming of Pilus Subunits Facilitates a Topological Transition that Drives Fiber Formation. Cell, 2002, 111, 543-551.	13.5	236
117	Evidence for donor strand complementation in the biogenesis of Haemophilus influenzae haemagglutinating pili. Molecular Microbiology, 2002, 35, 1335-1347.	1.2	14
118	Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Molecular Microbiology, 2002, 44, 903-915.	1.2	360
119	Structural Basis of the Interaction of the Pyelonephritic E. coli Adhesin to Its Human Kidney Receptor. Cell, 2001, 105, 733-743.	13.5	250
120	Bacteria thread the needle. Nature, 2001, 414, 29-31.	13.7	6
121	Establishment of a Persistent Escherichia coli Reservoir during the Acute Phase of a Bladder Infection. Infection and Immunity, 2001, 69, 4572-4579.	1.0	706
122	Stereoselective Synthesis of Optically Active β-Lactams, Potential Inhibitors of Pilus Assembly in Pathogenic Bacteria. Organic Letters, 2000, 2, 2065-2067.	2.4	44
123	CELL BIOLOGY: Bacterial Spelunkers. Science, 2000, 289, 732-733.	6.0	16
124	Probing conserved surfaces on PapD. Molecular Microbiology, 1999, 31, 773-783.	1.2	34
125	Structural Basis of Chaperone Function and Pilus Biogenesis. Science, 1999, 285, 1058-1061.	6.0	396
126	X-ray Structure of the FimC-FimH Chaperone-Adhesin Complex from Uropathogenic Escherichia coli. Science, 1999, 285, 1061-1066.	6.0	582

#	Article	IF	CITATIONS
127	Induction and Evasion of Host Defenses by Type 1-Piliated Uropathogenic Escherichia coli. , 1998, 282, 1494-1497.		857
128	Prevention of Mucosal Escherichia coli Infection by FimH-Adhesin-Based Systemic Vaccination. Science, 1997, 276, 607-611.	6.0	548
129	Transferred nuclear Overhauser effect spectroscopy study of a peptide from the PapG pilus subunit bound by theEscherichia coliPapD chaperone. FEBS Letters, 1997, 412, 115-120.	1.3	6
130	Molecular dissection of PapD interaction with PapG reveals two chaperone-binding sites. Molecular Microbiology, 1995, 16, 1011-1020.	1.2	30
131	Structural requirements for the glycolipid receptor of human uropathogenic Escherichia coli. Molecular Microbiology, 1995, 16, 1021-1029.	1.2	65
132	P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature, 1992, 356, 252-255.	13.7	337
133	The Chaperone-Usher Pathway of Pilus Fiber Biogenesis. , 0, , 69-79.		0
134	Sugar Recognition and Bacterial Attachment. , 0, , 37-48.		0
135	Uropathogenic Escherichia coli Virulence and Gene Regulation. , 0, , 133-155.		0