Susanne S Scherrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1813695/publications.pdf

Version: 2024-02-01

304743 315739 2,144 37 22 38 h-index citations g-index papers 39 39 39 1751 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct comparison of the bond strength results of the different test methods: A critical literature review. Dental Materials, 2010, 26, e78-e93.	3.5	348
2	Fractographic analyses of three ceramic whole crown restoration failures. Dental Materials, 2005, 21, 920-929.	3.5	163
3	ADM guidanceâ€"Ceramics: guidance to the use of fractography in failure analysis of brittle materials. Dental Materials, 2017, 33, 599-620.	3.5	133
4	Fatigue behavior in water of Y-TZP zirconia ceramics after abrasion with 30μm silica-coated alumina particles. Dental Materials, 2011, 27, e28-e42.	3.5	112
5	Fractographic ceramic failure analysis using the replica technique. Dental Materials, 2007, 23, 1397-1404.	3.5	110
6	Fractographic failure analysis of a Procera \hat{A}^{\otimes} AllCeram crown using stereo and scanning electron microscopy. Dental Materials, 2008, 24, 1107-1113.	3.5	110
7	Comparison of three fracture toughness testing techniques using a dental glass and a dental ceramic. Dental Materials, 1998, 14, 246-255.	3.5	103
8	Failure analysis of ceramic clinical cases using qualitative fractography. International Journal of Prosthodontics, 2006, 19, 185-92.	1.7	94
9	A new testing protocol for zirconia dental implants. Dental Materials, 2015, 31, 15-25.	3.5	84
10	A 3D printed <scp>TCP</scp> / <scp>HA</scp> structure as a new osteoconductive scaffold for vertical bone augmentation. Clinical Oral Implants Research, 2016, 27, 55-62.	4.5	84
11	Grinding damage assessment for CAD-CAM restorative materials. Dental Materials, 2017, 33, 294-308.	3.5	78
12	ADM guidanceâ€"Ceramics: Fracture toughness testing and method selection. Dental Materials, 2017, 33, 575-584.	3.5	76
13	Thermally induced fracture for core-veneered dental ceramic structures. Acta Biomaterialia, 2013, 9, 8394-8402.	8.3	60
14	Surface roughness and EDS characterization of a Y-TZP dental ceramic treated with the CoJetâ,, \$\phi\$ Sand. Dental Materials, 2010, 26, 1035-1042.	3.5	54
15	Fractographic analysis of a dental zirconia framework: A case study on design issues. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 623-629.	3.1	52
16	Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: A comparison of numerical predictions with experimental data after 2 years of aging. Dental Materials, 2016, 32, 394-402.	3.5	52
17	Monotonic flexure and fatigue strength of composites for provisional and definitive restorations. Journal of Prosthetic Dentistry, 2003, 89, 579-588.	2.8	47
18	Grinding damage assessment on four high-strength ceramics. Dental Materials, 2016, 32, 171-182.	3.5	46

#	Article	IF	CITATIONS
19	ADM guidance-Ceramics: all-ceramic multilayer interfaces in dentistry. Dental Materials, 2017, 33, 585-598.	3.5	37
20	Large Bone Vertical Augmentation Using a Threeâ€Dimensional Printed TCP/HA Bone Graft: A Pilot Study in Dog Mandible. Clinical Implant Dentistry and Related Research, 2016, 18, 1183-1192.	3.7	36
21	Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation. Materials, 2015, 8, 2174-2190.	2.9	34
22	Three- to nine-year survival estimates and fracture mechanisms of zirconia- and alumina-based restorations using standardized criteria to distinguish the severity of ceramic fractures. Clinical Oral Investigations, 2015, 19, 2295-2307.	3.0	30
23	A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro. Materials Science and Engineering C, 2021, 123, 111976.	7.3	27
24	Could 3D printing be the future for oral soft tissue regeneration?. Bioprinting, 2020, 20, e00100.	5 . 8	23
25	Fracture toughness of aged dental composites in combined mode I and mode II loading. Journal of Biomedical Materials Research Part B, 2000, 53, 362-370.	3.1	21
26	Translational research on clinically failed zirconia implants. Dental Materials, 2019, 35, 368-388.	3 . 5	21
27	Report on fractures of trilayered all-ceramic fixed dental prostheses. Case Studies in Engineering Failure Analysis, 2016, 7, 71-79.	1.2	20
28	Mechanical and structural characteristics of commercially pure grade 2 Ti welds and solder joints. Journal of Materials Science: Materials in Medicine, 2001, 12, 719-725.	3.6	19
29	Fractography of clinical failures of indirect resin composite endocrown and overlay restorations. Dental Materials, 2021, 37, e341-e359.	3.5	16
30	In vivo shell-like fractures of veneered-ZrO2 fixed dental prostheses. Case Studies in Engineering Failure Analysis, 2014, 2, 91-99.	1.2	15
31	Fracture of a veneered-ZrO2 dental prosthesis from an inner thermal crack. Case Studies in Engineering Failure Analysis, 2014, 2, 100-106.	1.2	14
32	Fractal analysis at varying locations of clinically failed zirconia dental implants. Dental Materials, 2020, 36, 1052-1058.	3 . 5	9
33	Modulation of osteoblast behavior on TiN _x O _y coatings by altering the N/O stoichiometry while maintaining a high thrombogenic potential. Journal of Biomaterials Applications, 2016, 30, 1219-1229.	2.4	5
34	Calvarial Model of Bone Augmentation in Rabbit for Assessment of Bone Growth and Neovascularization in Bone Substitution Materials. Journal of Visualized Experiments, 2019, , .	0.3	4
35	Pre-Treat Xenogenic Collagenous Blocks of Bone Substitutes with Saline Facilitate Their Manipulation and Guarantee High Bone Regeneration Rates, Qualitatively and Quantitatively. Biomedicines, 2021, 9, 308.	3.2	1
36	Identification of Type-H-like Blood Vessels in a Dynamic and Controlled Model of Osteogenesis in Rabbit Calvarium. Materials, 2022, 15, 4703.	2.9	1

SUSANNE S SCHERRER

#	Article	IF	CITATIONS
37	Fractography of Dental Ceramics. From Biomaterials Towards Medical Devices, 2018, , 211-243.	0.0	0