Wayne M. Getz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1813601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Africa's drylands in a changing world: Challenges for wildlife conservation under climate and land-use changes in the Greater Etosha Landscape. Global Ecology and Conservation, 2022, 38, e02221.	2.1	9
2	The neglected season: Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer. Global Change Biology, 2021, 27, 993-1002.	9.5	33
3	Factors influencing scavenger guilds and scavenging efficiency in Southwestern Montana. Scientific Reports, 2021, 11, 4254.	3.3	11
4	A versatile web app for identifying the drivers of COVID-19 epidemics. Journal of Translational Medicine, 2021, 19, 109.	4.4	9
5	Ensemble machine learning of factors influencing COVID-19 across US counties. Scientific Reports, 2021, 11, 11777.	3.3	12
6	Disease or drought: environmental fluctuations release zebra from a potential pathogen-triggered ecological trap. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210582.	2.6	9
7	Drivers of change and stability in the gut microbiota of an omnivorous avian migrant exposed to artificial food supplementation. Molecular Ecology, 2021, 30, 4723-4739.	3.9	16
8	A relativeâ€motion method for parsing spatiotemporal behaviour of dyads using GPS relocation data. Methods in Ecology and Evolution, 2021, 12, 2256-2271.	5.2	5
9	Anthrax Surveillance and the Limited Overlap Between Obligate Scavengers and Endemic Anthrax Zones in the United States. Vector-Borne and Zoonotic Diseases, 2021, 21, 675-684.	1.5	3
10	Modeling the population effects of escape mutations in SARS-CoV-2 to guide vaccination strategies. Epidemics, 2021, 36, 100484.	3.0	7
11	Iterative human and automated identification of wildlife images. Nature Machine Intelligence, 2021, 3, 885-895.	16.0	22
12	A runtime alterable epidemic model with genetic drift, waning immunity and vaccinations. Journal of the Royal Society Interface, 2021, 18, 20210648.	3.4	5
13	A continent-wide high genetic load in African buffalo revealed by clines in the frequency of deleterious alleles, genetic hitchhiking and linkage disequilibrium. PLoS ONE, 2021, 16, e0259685.	2.5	2
14	Migration, pathogens and the avian microbiome: A comparative study in sympatric migrants and residents. Molecular Ecology, 2020, 29, 4706-4720.	3.9	25
15	Ungulate use of locally infectious zones in a re-emerging anthrax risk area. Royal Society Open Science, 2020, 7, 200246.	2.4	5
16	Does HIV infection increase male sexual behavior?. Evolution, Medicine and Public Health, 2020, 2020, 174-180.	2.5	0
17	Movement ecology and sex are linked to barn owl microbial community composition. Molecular Ecology, 2020, 29, 1358-1371.	3.9	33
18	Rethinking megafauna. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192643.	2.6	35

#	Article	lF	CITATIONS
19	Synergistic China–US Ecological Research is Essential for Global Emerging Infectious Disease Preparedness. EcoHealth, 2020, 17, 160-173.	2.0	30
20	Disease transmission and introgression can explain the long-lasting contact zone of modern humans and Neanderthals. Nature Communications, 2019, 10, 5003.	12.8	30
21	A natural gene drive system influences bovine tuberculosis susceptibility in African buffalo: Possible implications for disease management. PLoS ONE, 2019, 14, e0221168.	2.5	1
22	Insights and approaches using deep learning to classify wildlife. Scientific Reports, 2019, 9, 8137.	3.3	60
23	Adequacy of SEIR models when epidemics have spatial structure: Ebola in Sierra Leone. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180282.	4.0	39
24	The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nature Microbiology, 2019, 4, 1337-1343.	13.3	153
25	Modeling R0 for Pathogens with Environmental Transmission: Animal Movements, Pathogen Populations, and Local Infectious Zones. International Journal of Environmental Research and Public Health, 2019, 16, 954.	2.6	20
26	Mesoscale movement and recursion behaviors of Namibian black rhinos. Movement Ecology, 2019, 7, 34.	2.8	11
27	Temporal variation in resource selection of African elephants follows longâ€ŧerm variability in resource availability. Ecological Monographs, 2019, 89, e01348.	5.4	47
28	An agent-based model of school closing in under-vaccinated communities during measles outbreaks. Simulation, 2019, 95, 385-393.	1.8	9
29	Going through the motions: incorporating movement analyses into disease research. Ecology Letters, 2018, 21, 588-604.	6.4	107
30	Making ecological models adequate. Ecology Letters, 2018, 21, 153-166.	6.4	100
31	Consensus and conflict among ecological forecasts of Zika virus outbreaks in the United States. Scientific Reports, 2018, 8, 4921.	3.3	50
32	Discrete stochastic analogs of Erlang epidemic models. Journal of Biological Dynamics, 2018, 12, 16-38.	1.7	29
33	Commentary to: a cross-validation-based approach for delimiting reliable home range estimates. Movement Ecology, 2018, 6, 10.	2.8	4
34	The Ecology of Pathogen Spillover and Disease Emergence at the Human-Wildlife-Environment Interface. Advances in Environmental Microbiology, 2018, , 267-298.	0.3	37
35	Ecological metrics and methods for GPS movement data. International Journal of Geographical Information Science, 2018, 32, 2272-2293.	4.8	52
36	Modeling epidemics: A primer and Numerus Model Builder implementation. Epidemics, 2018, 25, 9-19.	3.0	35

#	Article	IF	CITATIONS
37	Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (<scp><i>Bacillus anthracis</i></scp>). Biological Reviews, 2018, 93, 1813-1831.	10.4	74
38	Genetic responsiveness of African buffalo to environmental stressors: A role for epigenetics in balancing autosomal and sex chromosome interactions?. PLoS ONE, 2018, 13, e0191481.	2.5	6
39	Social foraging and individual consistency in following behaviour: testing the information centre hypothesis in free-ranging vultures. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162654.	2.6	64
40	A web app for population viability and harvesting analyses. Natural Resource Modelling, 2017, 30, .	2.0	8
41	Carnivore carcasses are avoided by carnivores. Journal of Animal Ecology, 2017, 86, 1179-1191.	2.8	54
42	Zebra migration strategies and anthrax in Etosha National Park, Namibia. Ecosphere, 2017, 8, e01925.	2.2	27
43	Parasite biodiversity faces extinction and redistribution in a changing climate. Science Advances, 2017, 3, e1602422.	10.3	194
44	Improving the prediction of African savanna vegetation variables using time series of MODIS products. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131, 77-91.	11.1	52
45	Suite of simple metrics reveals common movement syndromes across vertebrate taxa. Movement Ecology, 2017, 5, 12.	2.8	67
46	A cross-validation-based approach for delimiting reliable home range estimates. Movement Ecology, 2017, 5, 19.	2.8	20
47	Seasonal Changes in Socio-Spatial Structure in a Group of Free-Living Spider Monkeys (Ateles) Tj ETQq1 1 0.784	314.ggBT /	Overlock 10
48	Description of 3 New Species ofEimeria(Apicomplexa: Eimeriidae) from Springbok (Antidorcas) Tj ETQq0 0 0 rgB	Г /Qverlocl	k 10 Tf 50 30
49	Appropriate complexity landscape modeling. Earth-Science Reviews, 2016, 160, 111-130.	9.1	50
50	Decision-making by a soaring bird: time, energy and risk considerations at different spatio-temporal scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150397.	4.0	63
51	Lethal exposure: An integrated approach to pathogen transmission via environmental reservoirs. Scientific Reports, 2016, 6, 27311.	3.3	61
52	Sympatric speciation in structureless environments. BMC Evolutionary Biology, 2016, 16, 50.	3.2	24
53	An Ecological Assessment of the Pandemic Threat of Zika Virus. PLoS Neglected Tropical Diseases, 2016, 10, e0004968.	3.0	101
54	An Agent-Based Model of School Closing in Under-Vacccinated Communities During Measles Outbreaks. , 2016, 2016, .		3

#	Article	IF	CITATIONS
55	Using Nova to construct agent-based models for epidemiological teaching and research. , 2015, , .		5
56	Panmictic and Clonal Evolution on a Single Patchy Resource Produces Polymorphic Foraging Guilds. PLoS ONE, 2015, 10, e0133732.	2.5	23
57	Tactics and Strategies for Managing Ebola Outbreaks and the Salience of Immunization. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-9.	1.3	21
58	Monitoring the Impact of Grazing on Rangeland Conservation Easements Using MODIS Vegetation Indices. Rangeland Ecology and Management, 2015, 68, 173-185.	2.3	19
59	Moving beyond Curve Fitting: Using Complementary Data to Assess Alternative Explanations for Long Movements of Three Vulture Species. American Naturalist, 2015, 185, E44-E54.	2.1	47
60	Seasonal Patterns of Hormones, Macroparasites, and Microparasites in Wild African Ungulates: The Interplay among Stress, Reproduction, and Disease. PLoS ONE, 2015, 10, e0120800.	2.5	59
61	Longevity of Mycobacterium bovis in Raw and Traditional Souring Milk as a Function of Storage Temperature and Dose. PLoS ONE, 2015, 10, e0129926.	2.5	26
62	Interactions between Bacillus anthracis and Plants May Promote Anthrax Transmission. PLoS Neglected Tropical Diseases, 2014, 8, e2903.	3.0	40
63	Gastrointestinal helminths may affect host susceptibility to anthrax through seasonal immune trade-offs. BMC Ecology, 2014, 14, 27.	3.0	29
64	Frequent and seasonally variable sublethal anthrax infections are accompanied by shortâ€lived immunity in an endemic system. Journal of Animal Ecology, 2014, 83, 1078-1090.	2.8	51
65	Parasite-mediated selection drives an immunogenetic trade-off in plains zebras (<i>Equus quagga</i>). Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140077.	2.6	31
66	Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141785.	2.6	89
67	Novel Giant Siphovirus from Bacillus anthracis Features Unusual Genome Characteristics. PLoS ONE, 2014, 9, e85972.	2.5	22
68	Phylogeography of Bacillus anthracis in the Country of Georgia Shows Evidence of Population Structuring and Is Dissimilar to Other Regional Genotypes. PLoS ONE, 2014, 9, e102651.	2.5	20
69	Positive Selection of Deleterious Alleles through Interaction with a Sex-Ratio Suppressor Gene in African Buffalo: A Plausible New Mechanism for a High Frequency Anomaly. PLoS ONE, 2014, 9, e111778.	2.5	4
70	Home range plus: a space-time characterization of movement over real landscapes. Movement Ecology, 2013, 1, 2.	2.8	146
71	Mixed strategies of griffon vultures' (Gyps fulvus) response to food deprivation lead to a hump-shaped movement pattern. Movement Ecology, 2013, 1, 5.	2.8	62
72	A hierarchical distance sampling approach to estimating mortality rates from opportunistic carcass surveillance data. Methods in Ecology and Evolution, 2013, 4, 361-369.	5.2	37

#	Article	IF	CITATIONS
73	Extra-couple HIV transmission in sub-Saharan Africa: a mathematical modelling study of survey data. Lancet, The, 2013, 381, 1561-1569.	13.7	56
74	Factors Influencing Foraging Search Efficiency: Why Do Scarce Lappet-Faced Vultures Outperform Ubiquitous White-Backed Vultures?. American Naturalist, 2013, 181, E102-E115.	2.1	65
75	Searching for sustainability: are assessments of wildlife harvests behind the times?. Ecology Letters, 2013, 16, 99-111.	6.4	105
76	Soil ingestion, nutrition and the seasonality of anthrax in herbivores of Etosha National Park. Ecosphere, 2013, 4, 1-19.	2.2	75
77	Clusters of poverty and disease emerge from feedbacks on an epidemiological network. Journal of the Royal Society Interface, 2013, 10, 20120656.	3.4	19
78	Computational population biology: linking the inner and outer worlds of organisms. Israel Journal of Ecology and Evolution, 2013, 59, 2-16.	0.6	11
79	Effects of Experimental Exclusion of Scavengers from Carcasses of Anthrax-Infected Herbivores on Bacillus anthracis Sporulation, Survival, and Distribution. Applied and Environmental Microbiology, 2013, 79, 3756-3761.	3.1	48
80	Herbaceous Forage and Selection Patterns by Ungulates across Varying Herbivore Assemblages in a South African Savanna. PLoS ONE, 2013, 8, e82831.	2.5	38
81	Persisting Viral Sequences Shape Microbial CRISPR-based Immunity. PLoS Computational Biology, 2012, 8, e1002475.	3.2	136
82	BLACK-BACKED JACKAL EXPOSURE TO RABIES VIRUS, CANINE DISTEMPER VIRUS, AND BACILLUS ANTHRACIS IN ETOSHA NATIONAL PARK, NAMIBIA. Journal of Wildlife Diseases, 2012, 48, 371-381.	0.8	46
83	A BIOMASS FLOW APPROACH TO POPULATION MODELS AND FOOD WEBS. Natural Resource Modelling, 2012, 25, 93-121.	2.0	7
84	Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures. Journal of Experimental Biology, 2012, 215, 986-996.	1.7	359
85	Distribution and Molecular Evolution of Bacillus anthracis Genotypes in Namibia. PLoS Neglected Tropical Diseases, 2012, 6, e1534.	3.0	75
86	Contingent Kernel Density Estimation. PLoS ONE, 2012, 7, e30549.	2.5	9
87	The utility of normalized difference vegetation index for predicting African buffalo forage quality. Journal of Wildlife Management, 2012, 76, 1499-1508.	1.8	71
88	Approaching a state shift in Earth's biosphere. Nature, 2012, 486, 52-58.	27.8	1,518
89	Diversity and structure of soil bacterial communities associated with vultures in an African savanna. Ecosphere, 2012, 3, 1-18.	2.2	19
90	Estimating carnivoran diets using a combination of carcass observations and scats from <scp>GPS</scp> clusters. Journal of Zoology, 2012, 286, 102-109.	1.7	38

#	Article	IF	CITATIONS
91	Synergistic effects of seasonal rainfall, parasites and demography on fluctuations in springbok body condition. Journal of Animal Ecology, 2012, 81, 58-69.	2.8	36
92	Marine Mammal Acoustics Exposure Analysis Models Used in US Navy Environmental Impact Statements. Advances in Experimental Medicine and Biology, 2012, 730, 551-556.	1.6	2
93	Unraveling the Effects of Selection and Demography on Immune Gene Variation in Free-Ranging Plains Zebra (Equus quagga) Populations. PLoS ONE, 2012, 7, e50971.	2.5	15
94	Rift Valley Fever Virus Infection in African Buffalo (Syncerus caffer) Herds in Rural South Africa: Evidence of Interepidemic Transmission. American Journal of Tropical Medicine and Hygiene, 2011, 84, 641-646.	1.4	59
95	Inferring ecological and behavioral drivers of African elephant movement using a linear filtering approach. Ecology, 2011, 92, 1648-1657.	3.2	39
96	Biomass transformation webs provide a unified approach to consumer–resource modelling. Ecology Letters, 2011, 14, 113-124.	6.4	70
97	Detection distance and environmental factors in conservation detection dog surveys. Journal of Wildlife Management, 2011, 75, 243-251.	1.8	78
98	Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus. BMC Evolutionary Biology, 2011, 11, 128.	3.2	34
99	Consumer-Resource Dynamics: Quantity, Quality, and Allocation. PLoS ONE, 2011, 6, e14539.	2.5	6
100	Selection against Accumulating Mutations in Niche-Preference Genes Can Drive Speciation. PLoS ONE, 2011, 6, e29487.	2.5	4
101	From moonlight to movement and synchronized randomness: Fourier and wavelet analyses of animal location time series data. Ecology, 2010, 91, 1506-1518.	3.2	65
102	Rainfall-driven sex-ratio genes in African buffalo suggested by correlations between Y-chromosomal haplotype frequencies and foetal sex ratio. BMC Evolutionary Biology, 2010, 10, 106.	3.2	15
103	Methods for Locating African Lion Kills Using Global Positioning System Movement Data. Journal of Wildlife Management, 2010, 74, 549-556.	1.8	53
104	Monitoring Linked Epidemics: The Case of Tuberculosis and HIV. PLoS ONE, 2010, 5, e8796.	2.5	6
105	Variation in faecal water content may confound estimates of gastro-intestinal parasite intensity in wild African herbivores. Journal of Helminthology, 2010, 84, 99-105.	1.0	10
106	SEASONAL AND DEMOGRAPHIC FACTORS INFLUENCING GASTROINTESTINAL PARASITISM IN UNGULATES OF ETOSHA NATIONAL PARK. Journal of Wildlife Diseases, 2010, 46, 1108-1119.	0.8	66
107	Likelihood ridges and multimodality in population growth rate models. Ecology, 2009, 90, 2313-2320.	3.2	47
108	Disease and the Dynamics of Food Webs. PLoS Biology, 2009, 7, e1000209.	5.6	19

#	Article	IF	CITATIONS
109	Sick and edgy: walk-counting as a metric of epidemic spreading on networks. Journal of the Royal Society Interface, 2009, 6, 897-907.	3.4	1
110	Disease, predation and demography: assessing the impacts of bovine tuberculosis on African buffalo by monitoring at individual and population levels. Journal of Applied Ecology, 2009, 46, 467-475.	4.0	71
111	Incongruent HIV and tuberculosis co-dynamics in Kenya: Interacting epidemics monitor each other. Epidemics, 2009, 1, 14-20.	3.0	10
112	Potential impact of vaccination on the hepatitis C virus epidemic in injection drug users. Epidemics, 2009, 1, 47-57.	3.0	50
113	Methods for assessing movement path recursion with application to African buffalo in South Africa. Ecology, 2009, 90, 2467-2479.	3.2	77
114	Development and Parameterization of a Rain- and Fire-driven Model for Exploring Elephant Effects in African Savannas. Environmental Modeling and Assessment, 2008, 13, 221-242.	2.2	9
115	Intersexual Conflict and Group Size in Alouatta palliata: A 23-year Evaluation. International Journal of Primatology, 2008, 29, 405-420.	1.9	28
116	Parameter estimation in a generalized discrete-time model of density dependence. Theoretical Ecology, 2008, 1, 221-229.	1.0	8
117	A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19052-19059.	7.1	2,043
118	HABITAT QUALITY AND HETEROGENEITY INFLUENCE DISTRIBUTION AND BEHAVIOR IN AFRICAN BUFFALO (<i>SYNCERUS CAFFER</i>). Ecology, 2008, 89, 1457-1468.	3.2	66
119	A framework for generating and analyzing movement paths on ecological landscapes. Proceedings of the United States of America, 2008, 105, 19066-19071.	7.1	168
120	Disentangling the effects of forage, social rank, and risk on movement autocorrelation of elephants using Fourier and wavelet analyses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19108-19113.	7.1	95
121	HIV dynamics and immunosenescence. Aids, 2008, 22, 307-309.	2.2	1
122	Impact of HIV on novel therapies for tuberculosis control. Aids, 2008, 22, 963-972.	2.2	6
123	Ecological cues, gestation length, and birth timing in African buffalo (Syncerus caffer). Behavioral Ecology, 2007, 18, 635-644.	2.2	70
124	Artificial neural networks in models of specialization, guild evolution and sympatric speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 431-440.	4.0	5
125	Genetic Exchange Across a Species Boundary in the Archaeal Genus Ferroplasma. Genetics, 2007, 177, 407-416.	2.9	67
126	Controlling extensively drug-resistant tuberculosis. Lancet, The, 2007, 370, 1464-1465.	13.7	7

#	Article	IF	CITATIONS
127	Utility of R 0 as a predictor of disease invasion in structured populations. Journal of the Royal Society Interface, 2007, 4, 315-324.	3.4	84
128	LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions. PLoS ONE, 2007, 2, e207.	2.5	410
129	Selection at the Y Chromosome of the African Buffalo Driven by Rainfall. PLoS ONE, 2007, 2, e1086.	2.5	13
130	Strainer: software for analysis of population variation in community genomic datasets. BMC Bioinformatics, 2007, 8, 398.	2.6	30
131	Hierarchical dominance structure and social organization in African elephants, Loxodonta africana. Animal Behaviour, 2007, 73, 671-681.	1.9	124
132	Social dominance, seasonal movements, and spatial segregation in African elephants: a contribution to conservation behavior. Behavioral Ecology and Sociobiology, 2007, 61, 1919-1931.	1.4	151
133	Characterization of a western North American carnivore community using PCR–RFLP of cytochrome b obtained from fecal samples. Conservation Genetics, 2007, 8, 1511-1513.	1.5	24
134	Coevolution of exploiter specialization and victim mimicry can be cyclic and saltational. Evolutionary Bioinformatics, 2007, 2, 35-43.	1.2	5
135	DYNAMICS AND MANAGEMENT OF INFECTIOUS DISEASE IN COLONIZING POPULATIONS. Ecology, 2006, 87, 1215-1224.	3.2	27
136	HIV Drug-resistant Strains as Epidemiologic Sentinels. Emerging Infectious Diseases, 2006, 12, 191-197.	4.3	13
137	The Potential Impact of Male Circumcision on HIV in Sub-Saharan Africa. PLoS Medicine, 2006, 3, e262.	8.4	290
138	Coevolution of Exploiter Specialization and Victim Mimicry can be Cyclic and Saltational. Evolutionary Bioinformatics, 2006, 2, 117693430600200.	1.2	4
139	Defining herbivore assemblages in the Kruger National Park: a correlative coherence approach. Oecologia, 2006, 146, 632-640.	2.0	24
140	Paternity uncertainty overrides sex chromosome selection for preferential grandparenting. Evolution and Human Behavior, 2006, 27, 206-223.	2.2	60
141	Assessing vaccination as a control strategy in an ongoing epidemic: Bovine tuberculosis in African buffalo. Ecological Modelling, 2006, 196, 494-504.	2.5	36
142	Range and Habitat Selection of African Buffalo in South Africa. Journal of Wildlife Management, 2006, 70, 764-776.	1.8	102
143	A likely ranking interpolation for resolving dominance orders in systems with unknown relationships. Behaviour, 2006, 143, 909-930.	0.8	13
144	Response from Svancara and Colleagues. BioScience, 2006, 56, 96.	4.9	1

#	Article	IF	CITATIONS
145	Prospects for Advancing Tuberculosis Control Efforts through Novel Therapies. PLoS Medicine, 2006, 3, e273.	8.4	76
146	Comment on "On the Regulation of Populations of Mammals, Birds, Fish, and Insects" I. Science, 2006, 311, 1100.1-1100.	12.6	16
147	Good Practices for Sharing Ecological Models. BioScience, 2006, 56, 59.	4.9	11
148	Basic methods for modeling the invasion and spread of contagious diseases. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 2006, , 87-109.	0.0	23
149	Modeling the invasion and spread of contagious diseases in heterogeneous populations. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 2006, , 113-144.	0.0	9
150	A decrease in drug resistance levels of the HIV epidemic can be bad news. Bulletin of Mathematical Biology, 2005, 67, 761-782.	1.9	13
151	Whom Are Parks For?. Conservation Biology, 2005, 19, 1333-1334.	4.7	0
152	Duelling timescales of host movement and disease recovery determine invasion of disease in structured populations. Ecology Letters, 2005, 8, 587-595.	6.4	172
153	Superspreading and the effect of individual variation on disease emergence. Nature, 2005, 438, 355-359.	27.8	2,096
154	Disentangling association patterns in fission–fusion societies using African buffalo as an example. Animal Behaviour, 2005, 69, 499-506.	1.9	98
155	The socioecology of elephants: analysis of the processes creating multitiered social structures. Animal Behaviour, 2005, 69, 1357-1371.	1.9	447
156	Gray Wolves as Climate Change Buffers in Yellowstone. PLoS Biology, 2005, 3, e92.	5.6	171
157	THE GENETICS OF GROUPS, FOR GROUP READING. BioScience, 2005, 55, 803.	4.9	0
158	A MODEL-FRAMED EVALUATION OF ELEPHANT EFFECTS ON TREE AND FIRE DYNAMICS IN AFRICAN SAVANNAS. , 2005, 15, 1331-1341.		90
159	Surface water availability and the management of herbivore distributions in an African savanna ecosystem. Journal of Arid Environments, 2005, 63, 406-424.	2.4	76
160	Should we expect population thresholds for wildlife disease?. Trends in Ecology and Evolution, 2005, 20, 511-519.	8.7	403
161	Frequency–dependent incidence in models of sexually transmitted diseases: portrayal of pair–based transmission and effects of illness on contact behaviour. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 625-634.	2.6	53
162	A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography, 2004, 27, 489-505.	4.5	318

#	Article	IF	CITATIONS
163	Simulating the effects of wolf-elk population dynamics on resource flow to scavengers. Ecological Modelling, 2004, 177, 193-208.	2.5	51
164	Control analysis of trophic chains. Ecological Modelling, 2003, 168, 153-171.	2.5	11
165	Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park. Journal of Animal Ecology, 2003, 72, 909-916.	2.8	286
166	Resource dispersion and consumer dominance: scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecology Letters, 2003, 6, 996-1003.	6.4	189
167	Correlative coherence analysis: variation from intrinsic and extrinsic sources in competing populations. Theoretical Population Biology, 2003, 64, 89-99.	1.1	11
168	Curtailing transmission of severe acute respiratory syndrome within a community and its hospital. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1979-1989.	2.6	125
169	IS POPULATION ECOLOGY A MATURE SCIENCE?. BioScience, 2003, 53, 885.	4.9	1
170	Microbicides and HIV: Help or Hindrance?. Journal of Acquired Immune Deficiency Syndromes (1999), 2003, 34, 71-75.	2.1	32
171	SURFACE-WATER CONSTRAINTS ON HERBIVORE FORAGING IN THE KRUGER NATIONAL PARK, SOUTH AFRICA. Ecology, 2003, 84, 2092-2107.	3.2	238
172	"Evo-Devo―and the Conundrum of Sympatric Speciation. BioScience, 2003, 53, 313.	4.9	0
173	THE USE OF STOCHASTIC DYNAMIC PROGRAMMING IN OPTIMAL LANDSCAPE RECONSTRUCTION FOR METAPOPULATIONS. , 2003, 13, 543-555.		89
174	ECA: control in ecosystems. Molecular Biology Reports, 2002, 29, 113-117.	2.3	3
175	Receptor Heterogeneity and its Effect on Sensitivity and Coding Range in Olfactory Sensory Neurons. Bulletin of Mathematical Biology, 2001, 63, 885-908.	1.9	10
176	Rate code input produces temporal code output from cockroach antennal lobes. BioSystems, 2000, 58, 151-158.	2.0	17
177	Coevolution of Contrary Choices in Hostâ€Parasitoid Systems. American Naturalist, 2000, 155, 637-648.	2.1	25
178	Signal Decoding and Receiver Evolution. Brain, Behavior and Evolution, 2000, 56, 45-62.	1.7	19
179	A Neural Network Model of General Olfactory Coding in the Insect Antennal Lobe. Chemical Senses, 1999, 24, 351-372.	2.0	24
180	A Kinetic Model of the Transient Phase in the Response of Olfactory Receptor Neurons. Chemical Senses, 1999, 24, 497-508.	2.0	9

#	Article	IF	CITATIONS
181	The effects of parasitoid fecundity and host taxon on the biological control of insect pests: the relationship between theory and data. Ecological Entomology, 1999, 24, 181-190.	2.2	55
182	CONSERVATION:Sustaining Natural and Human Capital: Villagers and Scientists. Science, 1999, 283, 1855-1856.	12.6	76
183	Neural Coding of General Odors in Insects. Annals of the Entomological Society of America, 1999, 92, 861-872.	2.5	7
184	A METAPHYSIOLOGICAL POPULATION MODEL OF STORAGE IN VARIABLE ENVIRONMENTS. Natural Resource Modelling, 1999, 12, 197-230.	2.0	29
185	Responses of Cockroach Antennal Lobe Projection Neurons to Pulsatile Olfactory Stimuli. Annals of the New York Academy of Sciences, 1998, 855, 517-520.	3.8	12
186	Evolutionary Stable Strategies and Trade-Offs in Generalized Beverton and Holt Growth Models. Theoretical Population Biology, 1998, 53, 216-235.	1.1	19
187	An Introspection on the Art of Modeling in Population Ecology. BioScience, 1998, 48, 540-552.	4.9	55
188	Host-parasite dynamics and the evolution of host immunity and parasite fecundity strategies. Bulletin of Mathematical Biology, 1997, 59, 427-450.	1.9	1
189	Host-parasite dynamics and the evolution of host immunity and parasite fecundity strategies. Bulletin of Mathematical Biology, 1997, 59, 427-450.	1.9	24
190	Response of American cockroach (Periplaneta americana) olfactory receptors to selected alcohol odorants and their binary combinations. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1997, 180, 701-709.	1.6	26
191	Coding properties of peak and average response rates in American cockroach olfactory sensory cells. BioSystems, 1997, 40, 55-63.	2.0	11
192	Modelling the biological control of insect pests: a review of host-parasitoid models. Ecological Modelling, 1996, 92, 121-143.	2.5	185
193	Host-Parasitoid Coexistence and Egg-Limited Encounter Rates. American Naturalist, 1996, 148, 333-347.	2.1	77
194	A Hypothesis Regarding the Abruptness of Density Dependence and the Growth Rate of Populations. Ecology, 1996, 77, 2014-2026.	3.2	131
195	Population dynamics and harvesting of semelparous species with phenotypic and genotypic variability in reproductive age. Journal of Mathematical Biology, 1995, 33, 521-556.	1.9	42
196	Partitioning non-linearities in the response of honey bee olfactory receptor neurons to binary odors. BioSystems, 1995, 34, 27-40.	2.0	34
197	ANALYSIS OF A LIMPET FISHERY USING A METAPHYSIOLOGICAL STANDâ€GROWTH MODEL. Natural Resource Modelling, 1994, 8, 139-161.	2.0	9
198	An inclusive fitness model for the evolutionary advantage of sibmating. Evolutionary Ecology, 1994, 8, 61-69.	1.2	16

#	Article	IF	CITATIONS
199	Honeybee olfactory sensilla behave as integrated processing units. Behavioral and Neural Biology, 1994, 61, 191-195.	2.2	36
200	Invasion and Maintenance of Alleles that Influence Mating and Parental Success. Journal of Theoretical Biology, 1993, 162, 515-537.	1.7	11
201	Response of olfactory receptor neurons in honeybees to odorants and their binary mixtures. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1993, 173, 169.	1.6	66
202	Metaphysiological and evolutionary dynamics of populations exploiting constant and interactive resources:R?K selection revisited. Evolutionary Ecology, 1993, 7, 287-305.	1.2	80
203	Odour detection in bees. Nature, 1993, 362, 119-120.	27.8	4
204	The logistic equation revisited: Final instalment. Trends in Ecology and Evolution, 1993, 8, 68-70.	8.7	17
205	Ecogenetic Analysis and Evolutionary Stable Strategies in Harvested Populations. Lecture Notes in Biomathematics, 1993, , 187-203.	0.3	3
206	A test of identified response classes among olfactory receptor neurons in the honey-bee worker. Chemical Senses, 1992, 17, 191-209.	2.0	56
207	Sex ratio genetics and the competitiveness of parasitic wasps. Bulletin of Mathematical Biology, 1992, 54, 295-311.	1.9	5
208	Invasion of sibmating genes in diploid and haplodiploid populations. Evolutionary Ecology, 1992, 6, 312-330.	1.2	7
209	A UNIFIED APPROACH TO MULTISPECIES MODELING. Natural Resource Modelling, 1991, 5, 393-421.	2.0	55
210	A neural network for processing olfactory-like stimuli. Bulletin of Mathematical Biology, 1991, 53, 805-823.	1.9	11
211	Olfactory perception in honeybees: Concatenated and mixed odorant stimuli, concentration, and exposure effects. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1991, 169, 215-230.	1.6	26
212	Chemosensory Kinâ€communication Systems and Kin Recognition in Honey Bees. Ethology, 1991, 87, 298-315.	1.1	39
213	Nesting strategies of primitively eusocial bees: A model of nest usurpation during the solitary state of the nesting cycle. Journal of Theoretical Biology, 1990, 144, 445-471.	1.7	15
214	Polycondensation and peptide chain-length distribution under prebiotic conditions. BioSystems, 1990, 24, 177-182.	2.0	2
215	Population Harvesting-Demographic Models of Fish, Forest, and Animal Resources Journal of Applied Ecology, 1990, 27, 761.	4.0	5
216	Odorant moiety and odor mixture perception in free-flying honey bees (Apis mellifera). Chemical Senses, 1990, 15, 111-128.	2.0	31

#	Article	IF	CITATIONS
217	Resource Availability and Parasitoid Abundance in the Analysis of Host-Parasitoid Data. Ecology, 1990, 71, 2372-2374.	3.2	8
218	Evolutionarily stable dispersal of a waterstrider in a temporally and spatially heterogeneous environment. Evolutionary Ecology, 1989, 3, 283-298.	1.2	26
219	Ecogenetic models, competition, and heteropatry. Theoretical Population Biology, 1989, 36, 34-58.	1.1	22
220	Stability and harvesting of competing populations with genetic variation in life history strategy. Theoretical Population Biology, 1989, 36, 77-124.	1.1	23
221	Harvesting discrete nonlinear age and stage structured populations. Journal of Optimization Theory and Applications, 1988, 57, 69-83.	1.5	9
222	Variability of chemosensory stimuli within honeybee (Apis mellifera) colonies: Differential conditioning assay for discrimination cues. Journal of Chemical Ecology, 1988, 14, 253-264.	1.8	10
223	Stability of discrete age-structured and aggregated delay-difference population models. Journal of Mathematical Biology, 1988, 26, 551-581.	1.9	54
224	Dialects and the evolution of the honeybee dance language. Trends in Ecology and Evolution, 1988, 3, 32-33.	8.7	4
225	Mass Rearing and Harvesting Based on an Age-Stage, Two-Sex Life Table: A Potato Tuberworm (Lepidoptera: Gelechiidae) Case Study. Environmental Entomology, 1988, 17, 18-25.	1.4	74
226	Quota setting in stochastic fisheries. Lecture Notes on Coastal and Estuarine Studies, 1988, , 259-274.	0.2	0
227	An Odor Discrimination Model with Application to Kin Recognition in Social Insects. International Journal of Neuroscience, 1987, 32, 963-978.	1.6	34
228	Binational Management of Pacific Hake (<i>Merluccius productus</i>): A Stochastic Modeling Approach. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44, 1053-1063.	1.4	14
229	On Managing Variable Marine Fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 1987, 44, 1370-1375.	1.4	43
230	A COMPARISON OF STAGE–STRUCTURED AND SINGLETREE MODELS FOR PROJECTING FOREST STANDS. Natural Resource Modelling, 1987, 2, 279-298.	2.0	2
231	Olfactory sensitivity and discrimination of mixtures in the honeybeeApis mellifera. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1987, 160, 239-245.	1.6	70
232	Modeling for Biological Resource Management. Lecture Notes in Biomathematics, 1987, , 22-42.	0.3	2
233	Honey bee kin recognition: learning self and nestmate phenotypes. Animal Behaviour, 1986, 34, 1617-1626.	1.9	57
234	Conditioning honeybees to discriminate between heritable odors from full and half sisters. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1986, 159, 251-256.	1.6	37

#	Article	IF	CITATIONS
235	Evaluation of Phenology Models Using Field Data: Case Study for the Pea Aphid, Acyrthosiphon pisum , and the Blue Alfalfa Aphid, Acyrthosiphon kondoi (Homoptera: Aphididae). Environmental Entomology, 1986, 15, 227-231.	1.4	19
236	Optimal and feedback strategies for managing multicohort populations. Journal of Optimization Theory and Applications, 1985, 46, 505-514.	1.5	14
237	Economics of Rice-Field Mosquito Control in California. BioScience, 1985, 35, 292-297.	4.9	8
238	A Conceptual Model for Multispecies, Multifleet Fisheries. Lecture Notes in Biomathematics, 1985, , 49-63.	0.3	2
239	Population dynamics: a per capita resource approach. Journal of Theoretical Biology, 1984, 108, 623-643.	1.7	128
240	Production models for nonlinear stochastic age-structured fisheries. Mathematical Biosciences, 1984, 69, 11-30.	1.9	12
241	Genetic kin recognition: honey bees discriminate between full and half sisters. Nature, 1983, 302, 147-148.	27.8	172
242	A Management Analysis of the Pacific Whiting (Merluccius productus) Fishery Using an Age-Structured Stochastic Recruitment Model. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40, 524-539.	1.4	36
243	Epidemic Models: Thresholds and Population Regulation. American Naturalist, 1983, 121, 892-898.	2.1	201
244	A Simulation of the Pacific Whiting Fishery Using an Age-Structured Stochastic Recruitment Model. Developments in Environmental Modelling, 1983, , 385-389.	0.3	0
245	An analysis of learned kin recognition in hymenoptera. Journal of Theoretical Biology, 1982, 99, 585-597.	1.7	68
246	Feedback control for a class of pest management problems modeled by a noninteractively distributed system. Journal of Optimization Theory and Applications, 1982, 38, 513-523.	1.5	1
247	Kin structure and the swarming behavior of the honey bee Apis mellifera. Behavioral Ecology and Sociobiology, 1982, 10, 265-270.	1.4	74
248	A Probability Transition Matrix Model for Yield Estimation in Fisheries with Highly Variable Recruitment. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38, 847-855.	1.4	38
249	Genetically based kin recognition systems. Journal of Theoretical Biology, 1981, 92, 209-226.	1.7	79
250	Two-target pursuit-evasion differential games in the plane. Journal of Optimization Theory and Applications, 1981, 34, 383-403.	1.5	67
251	Optimal control systems with state variable jump discontinuities. Journal of Optimization Theory and Applications, 1980, 31, 195-205.	1.5	13
252	The geometry of the barrier in the †̃game of two cars'. Optimal Control Applications and Methods, 1980, 1, 103-118.	2.1	33

#	Article	IF	CITATIONS
253	The ultimate-sustainable-yield problem in nonlinear age-structured populations. Mathematical Biosciences, 1980, 48, 279-292.	1.9	59
254	Qualitative differential games with two targets. Journal of Mathematical Analysis and Applications, 1979, 68, 421-430.	1.0	79
255	On harvesting two competing populations. Journal of Optimization Theory and Applications, 1979, 28, 585-602.	1.5	13
256	Optimal harvesting of structured populations. Mathematical Biosciences, 1979, 44, 269-291.	1.9	31
257	Invariant Structures in a System of Competitive Logistic Ordinary Differential Equations. SIAM Journal on Applied Mathematics, 1979, 36, 321-333.	1.8	7
258	On modelling temporal patterns in stressed ecosystems — Recreation in a coniferous forest. Ecological Modelling, 1978, 5, 237-257.	2.5	3
259	Sufficiency Conditions for Finite Escape Times in Systems of Quadratic Differential Equations. IMA Journal of Applied Mathematics, 1977, 19, 377-383.	1.6	12
260	Stochastic equivalents of the linear and Lotka-Volterra systems of equations— a general birth-and-death process formulation. Mathematical Biosciences, 1976, 29, 235-257.	1.9	10
261	Optimal control of a birth-and-death process population model. Mathematical Biosciences, 1975, 23, 87-111.	1.9	16