Marta Quintanilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1813304/publications.pdf

Version: 2024-02-01

		304701	330122
38	1,956	22	37
papers	citations	h-index	g-index
38	38	38	2739
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Harvesting Lost Photons: Plasmon and Upconversion Enhanced Broadband Photocatalytic Activity in Core@Shell Microspheres Based on Lanthanideâ€Doped NaYF ₄ , TiO ₂ , and Au. Advanced Functional Materials, 2015, 25, 2950-2960.	14.9	263
2	Guiding Rules for Selecting a Nanothermometer. Nano Today, 2018, 19, 126-145.	11.9	247
3	1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Research, 2015, 8, 649-665.	10.4	185
4	Temperature Sensing with Up-Converting Submicron-Sized LiNbO ₃ :Er ³⁺ /Yb ³⁺ Particles. Applied Physics Express, 2011, 4, 022601.	2.4	149
5	Subtissue Plasmonic Heating Monitored with CaF ₂ :Nd ³⁺ ,Y ³⁺ Nanothermometers in the Second Biological Window. Chemistry of Materials, 2018, 30, 2819-2828.	6.7	87
6	Temperature-Induced Energy Transfer in Dye-Conjugated Upconverting Nanoparticles: A New Candidate for Nanothermometry. Chemistry of Materials, 2015, 27, 235-244.	6.7	86
7	Optimizing infrared to near infrared upconversion quantum yield of \hat{l}^2 -NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices. Journal of Applied Physics, 2013, 114, .	2.5	85
8	Intense ultraviolet upconversion in water dispersible SrF ₂ :Tm ³⁺ ,Yb ³⁺ nanoparticles: the effect of the environment on light emissions. Journal of Materials Chemistry C, 2015, 3, 3108-3113.	5. 5	79
9	Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows. Nanoscale, 2018, 10, 2568-2576.	5.6	72
10	Light Management in Upconverting Nanoparticles: Ultrasmall Core/Shell Architectures to Tune the Emission Color. ACS Photonics, 2014, 1, 662-669.	6.6	60
11	SERS and plasmonic heating efficiency from anisotropic core/satellite superstructures. Nanoscale, 2019, 11, 17655-17663.	5.6	59
12	Enhanced Luminescence, Collective Heating, and Nanothermometry in an Ensemble System Composed of Lanthanideâ€Doped Upconverting Nanoparticles and Gold Nanorods. Advanced Optical Materials, 2015, 3, 1606-1613.	7.3	54
13	Tuning from blue to magenta the up-converted emissions of YF ₃ :Tm ³⁺ /Yb ³⁺ nanocrystals. Nanoscale, 2011, 3, 1046-1052.	5.6	46
14	Nd3+ activated CaF2 NPs as colloidal nanothermometers in the biological window. Optical Materials, 2017, 68, 29-34.	3.6	42
15	Sensitive Detection of ssDNA Using an LRET-Based Upconverting Nanohybrid Material. ACS Applied Materials & Samp; Interfaces, 2015, 7, 18257-18265.	8.0	40
16	Iron-Based Core–Shell Nanowires for Combinatorial Drug Delivery and Photothermal and Magnetic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 43976-43988.	8.0	38
17	Challenges for optical nanothermometry in biological environments. Chemical Society Reviews, 2022, 51, 4223-4242.	38.1	38
18	Uniform YF3:Yb,Er up-conversion nanophosphors of various morphologies synthesized in polyol media through an ionic liquid. Journal of Nanoparticle Research, 2010, 12, 2553-2565.	1.9	35

#	Article	IF	Citations
19	Thermal monitoring during photothermia: hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry. Theranostics, 2019, 9, 7298-7312.	10.0	32
20	Colloidal nanothermometers based on neodymium doped alkaline-earth fluorides in the first and second biological windows. Sensors and Actuators B: Chemical, 2017, 250, 147-155.	7.8	27
21	Heat generation by branched Au/Pd nanocrystals: influence of morphology and composition. Nanoscale, 2019, 11, 19561-19570.	5 . 6	24
22	Synthesis of Spherical Down―and Up onversion NaYF ₄ â€Based Nanophosphors with Tunable Size in Ethylene Glycol without Surfactants or Capping Additives. European Journal of Inorganic Chemistry, 2008, 2008, 4517-4524.		22
23	Micro-Raman characterization of Zn-diffused channel waveguides in Tm^3+:LiNbO_3. Optics Express, 2010, 18, 5449.	3.4	22
24	Caged clusters shine brighter. Science, 2018, 361, 645-645.	12.6	21
25	Cubic <i>versus</i> hexagonal – phase, size and morphology effects on the photoluminescence quantum yield of NaGdF ₄ :Er ³⁺ /Yb ³⁺ upconverting nanoparticles. Nanoscale, 2022, 14, 1492-1504.	5.6	21
26	Engineering efficient upconverting nanothermometers using Eu3+ ions. Nanoscale Advances, 2019, 1, 757-764.	4.6	19
27	Crystal structure and optical spectra of LiLa9(SiO4)6O2 crystals activated with Er3+. Journal of Luminescence, 2008, 128, 738-740.	3.1	17
28	Growth and optical characterization of Tm3+-doped LiNbO3. Optical Materials, 2008, 30, 1098-1102.	3.6	16
29	Near-infrared triggered generation of reactive oxygen species from upconverting nanoparticles decorated with an organoiridium complex. Journal of Materials Chemistry B, 2016, 4, 3113-3120.	5.8	16
30	Infrared energy transfer in Tm3+:LiNbO3. Journal of Luminescence, 2008, 128, 927-930.	3.1	11
31	Polarized emission and absorption cross-section calculation in LiNbO3:Tm3+. Journal of Luminescence, 2008, 128, 988-991.	3.1	9
32	Optical transition probabilities in Er ^{3 +} - and Tm ^{3 +} -doped LiLa ₉ (SiO ₄) ₆ O ₂ crystals. Journal of Physics Condensed Matter, 2010, 22, 215901.	1.8	9
33	Energy transfer efficiency in YF3 nanocrystals: Quantifying the Yb3+ to Tm3+ infrared dynamics. Journal of Applied Physics, 2013, 113, .	2.5	9
34	Preparation and characterization ofÂstable aqueous suspensions ofÂup-converting Er3+/Yb3+-doped LiNbO3 nanocrystals. Applied Physics B: Lasers and Optics, 2011, 102, 651-658.	2.2	5
35	Control of infrared cross-relaxation in LiNbO_3:Tm^3+ through high-pressure. Optical Materials Express, 2015, 5, 1168.	3.0	5
36	Characterization of fluoride nanocrystals for optical refrigeration., 2015,,.		3

#	Article	lF	CITATIONS
37	Confocal micro-luminescence of Zn-diffused LiNbO3:Tm3+ channel waveguides. Journal of Luminescence, 2009, 129, 1698-1701.	3.1	2
38	Towards near-infrared photosensitization of tungsten trioxide nanostructured films by upconverting nanoparticles. RSC Advances, 2015, 5, 81875-81880.	3.6	1