
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1812488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. Journal of the American Water Resources Association, 2013, 49, 577-591.	2.4	411
2	ET mapping for agricultural water management: present status and challenges. Irrigation Science, 2008, 26, 223-237.	2.8	296
3	Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Advances in Water Resources, 2012, 50, 134-151.	3.8	148
4	A model integration framework for linking SWAT and MODFLOW. Environmental Modelling and Software, 2015, 73, 103-116.	4.5	123
5	Overview of the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08): A field experiment evaluating methods for quantifying ET at multiple scales. Advances in Water Resources, 2012, 50, 4-19.	3.8	99
6	Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128, 192-203.	11.1	99
7	Manuresheds: Advancing nutrient recycling in US agriculture. Agricultural Systems, 2020, 182, 102813.	6.1	75
8	A review of downscaling methods for remote sensing-based irrigation management: part I. Irrigation Science, 2013, 31, 831-850.	2.8	67
9	Soil water content estimation using a remote sensing based hybrid evapotranspiration modeling approach. Advances in Water Resources, 2012, 50, 152-161.	3.8	64
10	Application of the water-related spectral reflectance indices: A review. Ecological Indicators, 2019, 98, 68-79.	6.3	62
11	Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters. Agricultural Water Management, 2016, 177, 274-283.	5.6	61
12	Microbial communities in soil profile are more responsive to legacy effects of wheat-cover crop rotations than tillage systems. Soil Biology and Biochemistry, 2018, 123, 126-135.	8.8	61
13	Evaluation of water-limited cropping systems in a semi-arid climate using DSSAT-CSM. Agricultural Systems, 2017, 150, 86-98.	6.1	58
14	Long-term spatial and temporal trends in frost indices in Kansas, USA. Climatic Change, 2013, 120, 169-181.	3.6	56
15	Impact of agroecosystems on groundwater resources in the Central High Plains, USA. Agriculture, Ecosystems and Environment, 2010, 139, 700-713.	5.3	51
16	Modeling the impact of nitrogen fertilizer application and tile drain configuration on nitrate leaching using SWAT. Agricultural Water Management, 2013, 130, 36-43.	5.6	51
17	Parameterizing ecosystem light use efficiency and water use efficiency to estimate maize gross primary production and evapotranspiration using MODIS EVI. Agricultural and Forest Meteorology, 2016, 222, 87-97.	4.8	51
18	Impact of rainfall pattern on interrill erosion process. Earth Surface Processes and Landforms, 2017, 42, 1833-1846.	2.5	51

#	Article	IF	CITATIONS
19	Surface Energy Balance Based Evapotranspiration Mapping in the Texas High Plains. Sensors, 2008, 8, 5186-5201.	3.8	50
20	Identifying and Evaluating a Suitable Index for Agricultural Drought Monitoring in the Texas High Plains. Journal of the American Water Resources Association, 2015, 51, 807-820.	2.4	47
21	Quantifying soybean evapotranspiration using an eddy covariance approach. Agricultural Water Management, 2018, 209, 228-239.	5.6	46
22	Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model. Agricultural Water Management, 2019, 221, 13-24.	5.6	45
23	Examining the short-term impacts of diverse management practices on plant phenology and carbon fluxes of Old World bluestems pasture. Agricultural and Forest Meteorology, 2017, 237-238, 60-70.	4.8	41
24	Evaluating the impact of future climate change on irrigated maize production in Kansas. Climate Risk Management, 2017, 17, 139-154.	3.2	41
25	Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 133, 128-141.	11.1	37
26	Investigating the influence of roughness length for heat transport (zoh) on the performance of SEBAL in semi-arid irrigated and dryland agricultural systems. Journal of Hydrology, 2014, 509, 231-244.	5.4	36
27	Evaluation of Evapotranspiration from Eddy Covariance Using Large Weighing Lysimeters. Agronomy, 2019, 9, 99.	3.0	35
28	Lysimetric evaluation of SEBAL using high resolution airborne imagery from BEAREX08. Advances in Water Resources, 2013, 59, 157-168.	3.8	33
29	Forage Potential of Summer Annual Grain Legumes in the Southern Great Plains. Agronomy Journal, 2018, 110, 2198-2210.	1.8	33
30	A review of potential image fusion methods for remote sensing-based irrigation management: part II. Irrigation Science, 2013, 31, 851-869.	2.8	31
31	Evaluation of the Hooghoudt and Kirkham Tile Drain Equations in the Soil and Water Assessment Tool to Simulate Tile Flow and Nitrate-Nitrogen. Journal of Environmental Quality, 2013, 42, 1699-1710.	2.0	31
32	Estimating Evapotranspiration for Dryland Cropping Systems in the Semiarid Texas High Plains Using <scp>SWAT</scp> . Journal of the American Water Resources Association, 2016, 52, 298-314.	2.4	31
33	DSSAT-MODFLOW: A new modeling framework for exploring groundwater conservation strategies in irrigated areas. Agricultural Water Management, 2020, 232, 106033.	5.6	31
34	Development and Evaluation of an Agricultural Drought Index by Harnessing Soil Moisture and Weather Data. Water (Switzerland), 2019, 11, 1375.	2.7	30
35	SWATâ€LUT: A Desktop Graphical User Interface for Updating Land Use in SWAT. Journal of the American Water Resources Association, 2019, 55, 1102-1115.	2.4	30
36	Artificial Neural Network Approach for Mapping Contrasting Tillage Practices. Remote Sensing, 2010, 2, 579-590.	4.0	29

#	Article	IF	CITATIONS
37	Carbon dioxide and water vapor fluxes in winter wheat and tallgrass prairie in central Oklahoma. Science of the Total Environment, 2018, 644, 1511-1524.	8.0	29
38	Gaussian process models for reference ET estimation from alternative meteorological data sources. Journal of Hydrology, 2014, 517, 28-35.	5.4	28
39	Growing season variability in carbon dioxide exchange of irrigated and rainfed soybean in the southern United States. Science of the Total Environment, 2017, 593-594, 263-273.	8.0	27
40	Optimizing preplant irrigation for maize under limited water in the High Plains. Agricultural Water Management, 2017, 187, 154-163.	5.6	27
41	Analysis and estimation of tallgrass prairie evapotranspiration in the central United States. Agricultural and Forest Meteorology, 2017, 232, 35-47.	4.8	27
42	THE SENSITIVITY OF ADAPT MODEL PREDICTIONS OF STREAMFLOWS TO PARAMETERS USED TO DEFINE HYDROLOGIC RESPONSE UNITS. Transactions of the American Society of Agricultural Engineers, 1999, 42, 381-389.	0.9	26
43	Estimation of surface energy fluxes using surface renewal and flux variance techniques over an advective irrigated agricultural site. Advances in Water Resources, 2012, 50, 91-105.	3.8	26
44	MODELING SEDIMENT AND PHOSPHORUS LOSSES IN AN AGRICULTURAL WATERSHED TO MEET TMDLs. Journal of the American Water Resources Association, 2004, 40, 533-543.	2.4	25
45	Sensitivity of Grass- and Alfalfa-Reference Evapotranspiration to Weather Station Sensor Accuracy. Applied Engineering in Agriculture, 2012, 28, 543-549.	0.7	25
46	A tool for mapping and spatio-temporal analysis of hydrological data. Environmental Modelling and Software, 2013, 48, 163-170.	4.5	25
47	Economic value and water productivity of major irrigated crops in the Ogallala aquifer region. Agricultural Water Management, 2019, 214, 55-63.	5.6	25
48	Evaluation of Sensible Heat Flux and Evapotranspiration Estimates Using a Surface Layer Scintillometer and a Large Weighing Lysimeter. Sensors, 2017, 17, 2350.	3.8	24
49	Grain sorghum production functions under different irrigation capacities. Agricultural Water Management, 2018, 203, 261-271.	5.6	24
50	Simulated long-term nitrogen losses for a midwestern agricultural watershed in the United States. Agricultural Water Management, 2008, 95, 616-624.	5.6	23
51	Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas High Plains. Science of the Total Environment, 2018, 637-638, 163-173.	8.0	23
52	Variability in carbon dioxide fluxes among six winter wheat paddocks managed under different tillage and grazing practices. Atmospheric Environment, 2018, 185, 100-108.	4.1	22
53	Validation and application of AquaCrop for irrigated cotton in the Southern Great Plains of US. Irrigation Science, 2020, 38, 593-607.	2.8	22
54	Suitability of Cotton as an Alternative Crop in the Ogallala Aquifer Region. Agronomy Journal, 2007, 99, 1397-1403.	1.8	21

#	Article	IF	CITATIONS
55	Estimating preseason irrigation losses by characterizing evaporation of effective precipitation under bare soil conditions using large weighing lysimeters. Agricultural Water Management, 2016, 169, 115-128.	5.6	21
56	Kansas Trends and Changes in Temperature, Precipitation, Drought, and Frostâ€Free Days from the 1890s to 2015. Journal of Contemporary Water Research and Education, 2017, 162, 18-30.	0.7	21
57	Evaluating evapotranspiration estimation methods in APEX model for dryland cropping systems in a semi-arid region. Agricultural Water Management, 2018, 206, 217-228.	5.6	21
58	Modeling irrigation and nitrogen management of wheat in northern Ethiopia. Agricultural Water Management, 2019, 216, 264-272.	5.6	21
59	Deriving Hourly Evapotranspiration Rates with SEBS: A Lysimetric Evaluation. Vadose Zone Journal, 2013, 12, 1-11.	2.2	20
60	Simulating Evapotranspiration and Yield Response of Selected Corn Varieties under Full and Limited Irrigation in the Texas High Plains Using DSSAT-CERES-Maize. Transactions of the ASABE, 2017, 60, 837-846.	1.1	20
61	Carbon and water dynamics in co-located winter wheat and canola fields in the U.S. Southern Great Plains. Agricultural and Forest Meteorology, 2019, 279, 107714.	4.8	20
62	Heat storage and its effect on the surface energy balance closure under advective conditions. Agricultural and Forest Meteorology, 2019, 265, 56-69.	4.8	20
63	Application of an energy balance method for estimating evapotranspiration in cropping systems. Agricultural Water Management, 2018, 204, 107-117.	5.6	19
64	Tallgrass Prairie Responses to Management Practices and Disturbances: A Review. Agronomy, 2018, 8, 300.	3.0	19
65	Simulating the Impacts of Irrigation Levels on Soybean Production in Texas High Plains to Manage Diminishing Groundwater Levels. Journal of the American Water Resources Association, 2019, 55, 56-69.	2.4	19
66	USING FIELD SCALE MODELS TO PREDICT PEAK FLOWS ON AGRICULTURAL WATERSHEDS. Journal of the American Water Resources Association, 1999, 35, 1223-1232.	2.4	18
67	Effects of changes in N-fertilizer management on water quality trends at the watershed scale. Agricultural Water Management, 2010, 97, 1855-1860.	5.6	18
68	Downscaling of Land Surface Temperature Maps in the Texas High Plains with the TsHARP Method. GIScience and Remote Sensing, 2011, 48, 583-599.	5.9	18
69	Climate Effects on Tallgrass Prairie Responses to Continuous and Rotational Grazing. Agronomy, 2019, 9, 219.	3.0	18
70	Predicting Forage Quality of Warm-Season Legumes by Near Infrared Spectroscopy Coupled with Machine Learning Techniques. Sensors, 2020, 20, 867.	3.8	18
71	Flux variance similarity-based partitioning of evapotranspiration over a rainfed alfalfa field using high frequency eddy covariance data. Agricultural and Forest Meteorology, 2020, 285-286, 107907.	4.8	18
72	Assessment of Alternative Agricultural Land Use Options for Extending the Availability of the Ogallala Aquifer in the Northern High Plains of Texas. Hydrology, 2018, 5, 53.	3.0	17

#	Article	IF	CITATIONS
73	Nitrous oxide emissions as influenced by legume cover crops and nitrogen fertilization. Nutrient Cycling in Agroecosystems, 2018, 112, 119-131.	2.2	17
74	Spatial analysis of the impact of climate change factors and adaptation strategies on productivity of wheat in Ethiopia. Science of the Total Environment, 2020, 731, 139094.	8.0	16
75	Calibration and Validation of CSM ROPGRO otton Model Using Lysimeter Data in the Texas High Plains. Journal of Contemporary Water Research and Education, 2017, 162, 61-78.	0.7	15
76	Simulating Soil Water Content, Evapotranspiration, and Yield of Variably Irrigated Grain Sorghum Using AquaCrop. Journal of the American Water Resources Association, 2019, 55, 976-993.	2.4	15
77	Multisite evaluation of an improved SWAT irrigation scheduling algorithm for corn (Zea mays L.) production in the U.S. Southern Great Plains. Environmental Modelling and Software, 2019, 118, 23-34.	4.5	15
78	Guar responses to temperature: Estimation of cardinal temperatures and photosynthetic parameters. Industrial Crops and Products, 2020, 145, 111940.	5.2	15
79	Integrating eddy fluxes and remote sensing products in a rotational grazing native tallgrass prairie pasture. Science of the Total Environment, 2020, 712, 136407.	8.0	15
80	Mothbean: A Potential Summer Crop for the Southern Great Plains. American Journal of Plant Sciences, 2018, 09, 1391-1402.	0.8	15
81	Simultaneous calibration of evapotranspiration and crop yield in agronomic system modeling using the APEX model. Agricultural Water Management, 2018, 208, 299-306.	5.6	14
82	Climate zones determine where substantial increases of maize yields can be attained in Northeast China. Climatic Change, 2018, 149, 473-487.	3.6	14
83	Dynamics of evapotranspiration over a non-irrigated alfalfa field in the Southern Great Plains of the United States. Agricultural Water Management, 2019, 223, 105727.	5.6	14
84	Yield and Water Productivity of Winter Wheat under Various Irrigation Capacities. Journal of the American Water Resources Association, 2019, 55, 24-37.	2.4	14
85	Annual dynamics of carbon dioxide fluxes over a rainfed alfalfa field in the U.S. Southern Great Plains. Agricultural and Forest Meteorology, 2019, 265, 208-217.	4.8	14
86	Transition Pathways to Sustainable Agricultural Water Management: A Review of Integrated Modeling Approaches. Journal of the American Water Resources Association, 2019, 55, 6-23.	2.4	13
87	Light interception, agronomic performance,and nutritive quality of annual forage legumes as affected by shade. Field Crops Research, 2022, 275, 108358.	5.1	13
88	Evaluation of financial efficiency of drip-irrigation of red pepper based on evapotranspiration calculated using an iterative soil water-budget approach. Scientia Horticulturae, 2017, 226, 398-405.	3.6	12
89	Impact of Length of Dataset on Streamflow Calibration Parameters and Performance of <scp>APEX</scp> Model. Journal of the American Water Resources Association, 2017, 53, 1164-1177.	2.4	12
90	Response of Tallgrass Prairie to Management in the U.S. Southern Great Plains: Site Descriptions, Management Practices, and Eddy Covariance Instrumentation for a Long-Term Experiment. Remote Sensing, 2019, 11, 1988.	4.0	12

#	Article	IF	CITATIONS
91	Adaptability and Forage Characterization of Finger Millet Accessions in U.S. Southern Great Plains. Agronomy, 2018, 8, 177.	3.0	11
92	MOD\$\$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions. Agricultural Water Management, 2020, 238, 106194.	5.6	11
93	Carbon dioxide and water vapor fluxes of multi-purpose winter wheat production systems in the U.S. Southern Great Plains. Agricultural and Forest Meteorology, 2021, 310, 108631.	4.8	11
94	Evaluating crop management options for sorghum, pearl millet and peanut to minimize risk under the projected midcentury climate scenario for different locations in Senegal. Climate Risk Management, 2022, 36, 100436.	3.2	11
95	Influence of geographical location, crop type and crop residue cover on bacterial and fungal community structures. Geoderma, 2011, 160, 271-280.	5.1	10
96	Dynamics of CO2 and H2O fluxes in Johnson grass in the U.S. Southern Great Plains. Science of the Total Environment, 2020, 739, 140077.	8.0	10
97	Summer forage capabilities of tepary bean and guar in the southern Great Plains. Agronomy Journal, 2020, 112, 2879-2890.	1.8	10
98	Comparison of the performances of DRAINMOD-NII and ADAPT models in simulating nitrate losses from subsurface drainage systems. Agricultural Water Management, 2013, 129, 21-30.	5.6	9
99	Knowledge and tools to enhance resilience of beef grazing systems for sustainable animal protein production. Annals of the New York Academy of Sciences, 2014, 1328, 10-17.	3.8	9
100	Accuracy Assessment of NOAA Gridded Daily Reference Evapotranspiration for the Texas High Plains. Journal of the American Water Resources Association, 2015, 51, 1262-1271.	2.4	9
101	In Search of Annual Legumes to Improve Forage Sorghum Yield and Nutritive Value in the Southern High Plains. Crop, Forage and Turfgrass Management, 2016, 2, 1-5.	0.6	9
102	Understanding Climateâ€Hydrologicâ€Human Interactions to Guide Groundwater Model Development for Southern High Plains. Journal of Contemporary Water Research and Education, 2017, 162, 79-99.	0.7	9
103	APEXSENSUN: An Openâ€Source Package in R for Sensitivity Analysis and Model Performance Evaluation of APEX. Journal of the American Water Resources Association, 2018, 54, 1270-1284.	2.4	9
104	Landsat Hourly Evapotranspiration Flux Assessment using Lysimeters for the Texas High Plains. Water (Switzerland), 2020, 12, 1192.	2.7	9
105	Evaluation of the Oceanic Niño Index as a decision support tool for winter wheat cropping systems in the Texas High Plains using SWAT. Computers and Electronics in Agriculture, 2018, 151, 331-337.	7.7	8
106	Impacts of tillage systems, nitrogen fertilizer rates and a legume green manure on light interception and yield of winter wheat. Cogent Food and Agriculture, 2019, 5, 1580176.	1.4	8
107	Detecting Biophysical Characteristics and Nitrogen Status of Finger Millet at Hyperspectral and Multispectral Resolutions. Frontiers in Agronomy, 2021, 2, .	3.3	8
108	Management options for mid-century maize (Zea mays L.) in Ethiopia. Science of the Total Environment, 2021, 758, 143635.	8.0	8

#	Article	IF	CITATIONS
109	Characterization of trends in reservoir storage, streamflow, and precipitation in the Canadian River watershed in New Mexico and Texas. Lake and Reservoir Management, 2015, 31, 64-79.	1.3	7
110	Featured Series Introduction: Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. Journal of the American Water Resources Association, 2019, 55, 3-5.	2.4	7
111	Incorporation and harvest management of hairy vetch-based green manure influence nitrous oxide emissions. Renewable Agriculture and Food Systems, 2020, 35, 561-570.	1.8	7
112	Comparison of Evapotranspiration and Biomass Simulation in Winter Wheat under Conventional and Conservation Tillage Systems using APEX Model. Ecohydrology and Hydrobiology, 2021, 21, 55-66.	2.3	7
113	Modeling the effects of crop management on food barley production under a midcentury changing climate in northern Ethiopia. Climate Risk Management, 2021, 32, 100308.	3.2	7
114	Ecosystem-level water use efficiency and evapotranspiration partitioning in conventional till and no-till rainfed canola. Agricultural Water Management, 2021, 250, 106825.	5.6	7
115	Evaluation of Water Use Efficiency Algorithms for Flux Variance Similarityâ€Based Evapotranspiration Partitioning in C ₃ and C ₄ Grain Crops. Water Resources Research, 2021, 57, e2020WR028866.	4.2	7
116	Climate change scenarios of surface solar radiation in data sparse regions: a case study in Malaprabha River Basin, India. Climate Research, 2014, 59, 259-270.	1.1	6
117	Lysimetric Evaluation of the APEX Model to Simulate Daily ET for Irrigated Crops in the Texas High Plains. Transactions of the ASABE, 2018, 61, 65-74.	1.1	6
118	A Modeling Framework for Deriving Daily Time Series of Evapotranspiration Maps Using a Surface Energy Balance Model. Remote Sensing, 2019, 11, 508.	4.0	6
119	Influence of Contrasting Soil Moisture Conditions on Carbon Dioxide and Nitrous Oxide Emissions from Terminated Green Manures. , 2019, 2, 1-8.		6
120	Editorial for the Special Issue "Remote Sensing of Evapotranspiration (ET)― Remote Sensing, 2019, 11, 2146.	4.0	6
121	Influence of Tillage Systems, and Forms and Rates of Nitrogen Fertilizers on CO2 and N2O Fluxes from Winter Wheat Cultivation in Oklahoma. Agronomy, 2020, 10, 320.	3.0	6
122	Evaluating optimal irrigation for potential yield and economic performance of major crops in southwestern Kansas. Agricultural Water Management, 2021, 244, 106536.	5.6	6
123	Evaluating optimal irrigation strategies for maize in Western Kansas. Agricultural Water Management, 2021, 246, 106677.	5.6	6
124	Soil N ₂ O emissions following termination of grass pea and oat cover crop residues with different maturity levels. Journal of Plant Nutrition and Soil Science, 2020, 183, 734-744.	1.9	6
125	Modeling Evapotranspiration and Crop Growth of Irrigated and Non-Irrigated Corn in the Texas High Plains Using RZWQM. Transactions of the ASABE, 2018, 61, 1653-1666.	1.1	5
126	Canopy Development of Annual Legumes and Forage Sorghum Intercrops and Its Relation to Dry Matter Accumulation. Agronomy Journal, 2018, 110, 939-949.	1.8	5

#	Article	IF	CITATIONS
127	Winter wheat yield and nitrous oxide emissions in response to cowpea-based green manure and nitrogen fertilization. Experimental Agriculture, 2020, 56, 239-254.	0.9	5
128	Understanding the effects of pasture type and stocking rate on the hydrology of the Southern Great Plains. Science of the Total Environment, 2020, 708, 134873.	8.0	5
129	Timeâ€varying trends in frost indicators in the U.S. Southern Great Plains. International Journal of Climatology, 2021, 41, 1264-1278.	3.5	5
130	Simulated Bermudagrass Production and Nitrate Leaching Affected by El Niño-Southern Oscillation, Soil, and Clipping Frequency. Agronomy Journal, 2017, 109, 2649-2661.	1.8	4
131	Evaluation of Satelliteâ€Derived Rainfall Data for Multiple Physioâ€Climatic Regions in the Santiago River Basin, Mexico. Journal of the American Water Resources Association, 2018, 54, 1068-1086.	2.4	4
132	Soil respiration from winter wheat-based cropping systems in the US Southern Great Plains as influenced by tillage managements. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2019, 69, 377-385.	0.6	4
133	Differential responses of native and managed prairie pastures to environmental variability and management practices. Agricultural and Forest Meteorology, 2020, 294, 108137.	4.8	4
134	Use of Multiple Environment Variety Trials Data to Simulate Maize Yields in the Ogallala Aquifer Region: A Two Model Approach. Journal of the American Water Resources Association, 2021, 57, 281-295.	2.4	4
135	Modeling Evapotranspiration of Winter Wheat Using Contextual and Pixel-Based Surface Energy Balance Models. Transactions of the ASABE, 2021, 64, 507-519.	1.1	4
136	Modeling Cotton Growth and Yield Response to Irrigation Practices for Thermally Limited Growing Seasons in Kansas. Transactions of the ASABE, 2021, 64, 1-12.	1.1	4
137	The potential of active and passive remote sensing to detect frequent harvesting of alfalfa. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102539.	2.8	4
138	Recent Ogallala Aquifer Region Drought Conditions as Observed by Terrestrial Water Storage Anomalies from GRACE. Journal of the American Water Resources Association, 2019, 55, 1370-1381.	2.4	3
139	Evaluating the sensitivity of vegetation and water indices to monitor drought for three Mediterranean crops. Agronomy Journal, 2021, 113, 123-134.	1.8	3
140	Interannual Variability and Seasonal Dynamics of Evapotranspiration of Arundo donax L. and Populations of its Biological Control Agent (Tetramesa romana). Ecohydrology and Hydrobiology, 2022, 22, 178-187.	2.3	3
141	Exceedance Probability of the Standardized Precipitation-Evapotranspiration Index in the Texas High Plains. Agricultural Sciences, 2017, 08, 783-800.	0.3	3
142	Comparing the Effects of Inputs for NTT and ArcAPEX Interfaces on Model Outputs and Simulation Performance. Journal of Water Resource and Protection, 2019, 11, 554-580.	0.8	3
143	Comparing Evapotranspiration Products of Different Temporal and Spatial Scales in Native and Managed Prairie Pastures. Remote Sensing, 2021, 13, 82.	4.0	3
144	Dormant Season Vegetation Phenology and Eddy Fluxes in Native Tallgrass Prairies of the U.S. Southern Plains. Remote Sensing, 2022, 14, 2620.	4.0	3

#	Article	IF	CITATIONS
145	Comparison of Evapotranspiration Simulation Performance by APEX Model in Dryland and Irrigated Cropping Systems. Journal of the American Water Resources Association, 2019, 55, 1009-1023.	2.4	2
146	Burning and Climate Interactions Determine Impacts of Grazing on Tallgrass Prairie Systems. Rangeland Ecology and Management, 2020, 73, 104-118.	2.3	2
147	Assessment of Landsat-Based Evapotranspiration Using Weighing Lysimeters in the Texas High Plains. Agronomy, 2020, 10, 1688.	3.0	2
148	Water vapor density and turbulent fluxes from three generations of infrared gas analyzers. Atmospheric Measurement Techniques, 2021, 14, 1253-1266.	3.1	2
149	Assessment of Heat Unit Availability and Potential Lint Yield of Cotton in Oklahoma. Applied Engineering in Agriculture, 2020, 36, 943-954.	0.7	2
150	Evaluation of SWAT Soil Water Estimation Accuracy Using Data from Indiana, Colorado, and Texas. Transactions of the ASABE, 2020, 63, 1827-1843.	1.1	2
151	Planting Density and Geometry Effect on Canopy Development, Forage Yield and Nutritive Value of Sorghum and Annual Legumes Intercropping. Sustainability, 2022, 14, 4517.	3.2	2
152	Estimating missing hourly climatic data using artificial neural network for energy balance based <scp>ET</scp> mapping applications. Meteorological Applications, 2017, 24, 457-465.	2.1	1
153	Nutritive Value and Silage Fermentation Characteristics of Forage Sorghum (<i>Sorghum bicolor</i> L.) Genotypes and Lablab (<i>Lablab) Tj ET</i>	Q ql 81 0.7	'8 4 314 rgBT