
Simona Cabib

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1812083/publications.pdf Version: 2024-02-01

SIMONA CARIR

#	Article	IF	CITATIONS
1	Stress, depression and the mesolimbic dopamine system. Psychopharmacology, 1996, 128, 331-342.	1.5	283
2	The mesoaccumbens dopamine in coping with stress. Neuroscience and Biobehavioral Reviews, 2012, 36, 79-89.	2.9	267
3	Abolition and Reversal of Strain Differences in Behavioral Responses to Drugs of Abuse After a Brief Experience. Science, 2000, 289, 463-465.	6.0	218
4	Barrel Pattern Formation Requires Serotonin Uptake by Thalamocortical Afferents, and Not Vesicular Monoamine Release. Journal of Neuroscience, 2001, 21, 6862-6873.	1.7	210
5	Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Research, 1991, 554, 217-222.	1.1	206
6	Norepinephrine in the Prefrontal Cortex Is Critical for Amphetamine-Induced Reward and Mesoaccumbens Dopamine Release. Journal of Neuroscience, 2003, 23, 1879-1885.	1.7	166
7	PSYCHOPHARMACOLOGY OF DOPAMINE: THE CONTRIBUTION OF COMPARATIVE STUDIES IN INBRED STRAINS OF MICE. Progress in Neurobiology, 1997, 51, 637-661.	2.8	135
8	Identifying Molecular Substrates in a Mouse Model of the Serotonin Transporter × Environment Risk Factor for Anxiety and Depression. Biological Psychiatry, 2008, 63, 840-846.	0.7	130
9	Stress promotes major changes in dopamine receptor densities within the mesoaccumbens and nigrostriatal systems. Neuroscience, 1998, 84, 193-200.	1.1	119
10	D1 and D2 receptor antagonists differently affect cocaine-induced locomotor hyperactivity in the mouse. Psychopharmacology, 1991, 105, 335-339.	1.5	118
11	The Medial Prefrontal Cortex Determines the Accumbens Dopamine Response to Stress through the Opposing Influences of Norepinephrine and Dopamine. Cerebral Cortex, 2007, 17, 2796-2804.	1.6	117
12	Repeated stressful experiences differently affect the time-dependent responses of the mesolimbic dopamine system to the stressor. Brain Research, 1993, 601, 333-336.	1.1	110
13	Opposite responses of mesolimbic dopamine system to controllable and uncontrollable aversive experiences. Journal of Neuroscience, 1994, 14, 3333-3340.	1.7	108
14	Susceptibility to conditioned place preference induced by addictive drugs in mice of the C57BL/6 and DBA/2 inbred strains. Psychopharmacology, 2005, 181, 327-336.	1.5	108
15	The contribution of comparative studies in inbred strains of mice to the understanding of the hyperactive phenotype. Behavioural Brain Research, 2002, 130, 103-109.	1.2	106
16	Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. NeuroReport, 2000, 11, 1361-1364.	0.6	100
17	Effects of immobilization stress on dopamine and its metabolites in different brain areas of the mouse: role of genotype and stress duration. Brain Research, 1988, 441, 153-160.	1.1	96
18	Increased vulnerability to psychosocial stress in heterozygous serotonin transporter knockout mice. DMM Disease Models and Mechanisms, 2010, 3, 459-470.	1.2	95

#	Article	IF	CITATIONS
19	Parallel Strain-Dependent Susceptibility to Environmentally-Induced Stereotypies and Stress-Induced Behavioral Sensitization in Mice. Physiology and Behavior, 1997, 61, 499-506.	1.0	91
20	Dopamine in the Medial Prefrontal Cortex Controls Genotype-Dependent Effects of Amphetamine on Mesoaccumbens Dopamine Release and Locomotion. Neuropsychopharmacology, 2004, 29, 72-80.	2.8	89
21	Chronic stress enhances apomorphine-induced stereotyped behavior in mice: Involvement of endogenous opioids. Brain Research, 1984, 298, 138-140.	1.1	83
22	Post-training dopamine receptor agonists and antagonists affect memory storage in mice irrespective of their selectivity for D1 or D2 receptors. Behavioral and Neural Biology, 1991, 56, 283-291.	2.3	82
23	Genetic susceptibility of mesocortical dopamine to stress determines liability to inhibition of mesoaccumbens dopamine and to behavioral â€~despair' in a mouse model of depression. Neuroscience, 2002, 115, 999-1007.	1.1	82
24	Psychopharmacology of memory modulation: Evidence for multiple interaction among neurotransmitters and hormones. Behavioural Brain Research, 1996, 77, 1-21.	1.2	79
25	Genotype-dependent effects of chronic stress on apomorphine-induced alterations of striatal and mesolimbic dopamine metabolism. Brain Research, 1991, 542, 91-96.	1.1	77
26	Parallel strain-dependent effect of amphetamine on locomotor activity and dopamine release in the nucleus accumbens: an in vivo study in mice. Neuroscience, 1997, 82, 521-528.	1.1	77
27	Genotype- and experience-dependent susceptibility to depressive-like responses in the forced-swimming test. Psychopharmacology, 2002, 164, 138-143.	1.5	71
28	Susceptibility to amphetamine-induced place preference is predicted by locomotor response to novelty and amphetamine in the mouse. Psychopharmacology, 2004, 172, 264-270.	1.5	68
29	Chronic stress induces strain-dependent sensitization to the behavioral effects of amphetamine in the mouse. Pharmacology Biochemistry and Behavior, 1992, 43, 53-60.	1.3	64
30	Different effects of repeated stressful experiences on mesocortical and mesolimbic dopamine metabolism. Neuroscience, 1996, 73, 375-380.	1.1	63
31	Effects of acute and repeated exposure to stress on the hypothalamo-pituitary-adrenocortical activity in mice during postnatal development. Hormones and Behavior, 1992, 26, 474-485.	1.0	62
32	Behavioral and biochemical changes monitored in two inbred strains of mice during exploration of an unfamiliar environment. Physiology and Behavior, 1990, 47, 749-753.	1.0	59
33	Effects of defeat experiences on dopamine metabolism in different brain areas of the mouse. Aggressive Behavior, 1990, 16, 271-284.	1.5	58
34	A comparison of the behavioral effects of minaprine, amphetamine and stress. Psychopharmacology, 1995, 121, 73-80.	1.5	56
35	Paw preference and brain dopamine asymmetries. Neuroscience, 1995, 64, 427-432.	1.1	56
36	Deficits in brain serotonin synthesis in a genetic mouse model of phenylketonuria. NeuroReport, 2002, 13, 2561-2564.	0.6	56

#	Article	IF	CITATIONS
37	Chronic exposure to a novel odor increases pups' vocalizations, maternal care, and alters dopaminergic functioning in developing mice. Behavioral and Neural Biology, 1987, 48, 197-205.	2.3	54
38	Effects of postnatal stress on dopamine mesolimbic system responses to aversive experiences in adult life. Brain Research, 1993, 604, 232-239.	1.1	54
39	Opposite imbalances between mesocortical and mesoaccumbens dopamine responses to stress by the same genotype depending on living conditions. Behavioural Brain Research, 2002, 129, 179-185.	1.2	53
40	Different effects of acute and chronic stress on two dopamine-mediated behaviors in the mouse. Physiology and Behavior, 1988, 43, 223-227.	1.0	48
41	Pharmacological evidence for a role of D2 dopamine receptors in the defensive behavior of the mouse. Behavioral and Neural Biology, 1988, 50, 98-111.	2.3	47
42	Dopamine-N-methyl-d-aspartate interactions in the modulation of locomotor activity and memory consolidation in mice. European Journal of Pharmacology, 1996, 308, 1-12.	1.7	47
43	Different effects of apomorphine on climbing behavior and locomotor activity in three strains of mice. Pharmacology Biochemistry and Behavior, 1985, 23, 555-557.	1.3	46
44	Role of genotype in the adaptation of the brain dopamine system to stress. Neuroscience and Biobehavioral Reviews, 1990, 14, 523-528.	2.9	46
45	Opposite strain-dependent effects of post-training corticosterone in a passive avoidance task in mice: role of dopamine. Brain Research, 1996, 729, 110-118.	1.1	46
46	Strain-dependent effects of post-training GABA receptor agonists and antagonists on memory storage in mice. Psychopharmacology, 1993, 111, 134-138.	1.5	45
47	The effects of morphine on memory consolidation in mice involve both D1 and D2 dopamine receptors. Behavioral and Neural Biology, 1994, 61, 156-161.	2.3	45
48	The behavioral profile of severe mental retardation in a genetic mouse model of phenylketonuria. Behavior Genetics, 2003, 33, 301-310.	1.4	45
49	Comparative immunohistochemical study of the dopaminergic systems in two inbred mouse strains (C57BL/6J and DBA/2J). Journal of Chemical Neuroanatomy, 2007, 33, 67-74.	1.0	44
50	Effects of corticotropin releasing factor and sauvagine on social behavior of isolated mice. Peptides, 1987, 8, 935-938.	1.2	43
51	Age-dependent changes of brain GABA levels, turnover rates and shock-induced aggressive behavior in	1.3	43
52	The effects of anandamide on memory consolidation in mice involve both D1and D2 dopamine receptors. Behavioural Pharmacology, 1997, 8, 707-712.	0.8	43
53	Long-term effects of postnatal manipulation on emotionality are prevented by maternal anxiolytic treatment in mice. , 1998, 32, 225-234.		42
54	A genetic analysis of stereotypy in the mouse: Dopaminergic plasticity following chronic stress. Behavioral and Neural Biology, 1985, 44, 239-248.	2.3	41

#	Article	IF	CITATIONS
55	Dose-dependent aversive and rewarding effects of amphetamine as revealed by a new place conditioning apparatus. Psychopharmacology, 1996, 125, 92-96.	1.5	41
56	Opposite genotype-dependent mesocorticolimbic dopamine response to stress. Neuroscience, 2001, 104, 627-631.	1.1	40
57	Early and Later Adoptions Differently Modify Mother-Pup Interactions Behavioral Neuroscience, 2004, 118, 590-596.	0.6	40
58	Influence of early life events on immune reactivity in adult mice. Developmental Psychobiology, 1994, 27, 205-213.	0.9	39
59	Serotonin levels and turnover in different brain areas of isolated aggressive or non-aggressive strains of mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1984, 8, 365-371.	2.5	38
60	Behavioral and mesocorticolimbic dopamine responses to non aggressive social interactions depend on previous social experiences and on the opponent's sex. Behavioural Brain Research, 2000, 112, 13-22.	1.2	37
61	Learning to cope with stress: psychobiological mechanisms of stress resilience. Reviews in the Neurosciences, 2012, 23, 659-72.	1.4	37
62	Modulatory Effect of Environmental Context and Drug History on Heroin-Induced Psychomotor Activity and Fos Protein Expression in the Rat Brain. Neuropsychopharmacology, 2007, 32, 2611-2623.	2.8	35
63	Brain dopamine receptor plasticity: testing a diathesis-stress hypothesis in an animal model. Psychopharmacology, 1997, 132, 153-160.	1.5	34
64	Reduced availability of brain amines during critical phases of postnatal development in a genetic mouse model of cognitive delay. Brain Research, 2008, 1217, 232-238.	1.1	34
65	5-Hydroxytryptophan during critical postnatal period improves cognitive performances and promotes dendritic spine maturation in genetic mouse model of phenylketonuria. International Journal of Neuropsychopharmacology, 2011, 14, 479-489.	1.0	33
66	Chronic cocaine enhances defensive behaviour in the laboratory mouse: involvement of D2 dopamine receptors. Psychopharmacology, 1988, 96, 437-441.	1.5	32
67	Strain-dependent effects of post-training dopamine receptor agonists and antagonists on memory storage in mice. Behavioral and Neural Biology, 1992, 58, 58-63.	2.3	31
68	Strain-dependent effects of dopamine agonists on acetylcholine release in the hippocampus: An in vivo study in mice. Neuroscience, 1996, 70, 653-660.	1.1	31
69	Evidence for the involvement of extinction-associated inhibitory learning in the forced swimming test. Behavioural Brain Research, 2015, 278, 348-355.	1.2	31
70	A classical genetic analysis of two apomorphine-induced behaviors in the mouse. Pharmacology Biochemistry and Behavior, 1988, 30, 143-147.	1.3	30
71	Fatigue modulates dopamine availability and promotes flexible choice reversals during decision making. Scientific Reports, 2017, 7, 535.	1.6	30
72	5-Hydroxytryptophan rescues serotonin response to stress in prefrontal cortex of hyperphenylalaninaemic mice. International Journal of Neuropsychopharmacology, 2009, 12, 1067.	1.0	29

#	Article	IF	CITATIONS
73	Repeated stressful experiences differently affect brain dopamine receptor subtypes. Life Sciences, 1991, 48, 1263-1268.	2.0	25
74	Strain-dependent effects of post-training cocaine or nomifensine on memory storage involve both D1 and D2 dopamine receptors. Psychopharmacology, 1994, 115, 157-162.	1.5	25
75	Selective improvement of strain-dependent performances of cognitive tasks by food restriction. Neurobiology of Learning and Memory, 2004, 81, 96-99.	1.0	25
76	Strain-dependent effects of D2 dopaminergic and muscarinic-cholinergic agonists and antagonists on memory consolidation processes in mice. Behavioural Brain Research, 1997, 86, 97-104.	1.2	24
77	Habituation to the test cage influences amphetamine-induced locomotion and Fos expression and increases FosB/ΔFosB-like immunoreactivity in mice. Neuroscience, 2006, 141, 597-605.	1.1	24
78	Genetic liability increases propensity to prime-induced reinstatement of conditioned place preference in mice exposed to low cocaine. Psychopharmacology, 2008, 198, 287-296.	1.5	24
79	Stress-induced decrease of 3-methoxytyramine in the nucleus accumbens of the mouse is prevented by naltrexone pretreatment. Life Sciences, 1989, 45, 1031-1037.	2.0	23
80	Corticolimbic catecholamines in stress: a computational model of the appraisal of controllability. Brain Structure and Function, 2015, 220, 1339-1353.	1.2	23
81	Stress-Induced Reduction of Dorsal Striatal D2 Dopamine Receptors Prevents Retention of a Newly Acquired Adaptive Coping Strategy. Frontiers in Pharmacology, 2017, 8, 621.	1.6	23
82	Strain-dependent involvement of D1 and D2 dopamine receptors in muscarinic cholinergic influences on memory storage. Behavioural Brain Research, 1998, 98, 17-26.	1.2	22
83	Strainâ \in specific proportion of the two isoforms of the dopamine D2 receptor in the mouse striatum: associated neural and behavioral phenotypes. Genes, Brain and Behavior, 2010, 9, 703-711.	1.1	22
84	In vivo catecholaminergic metabolism in the medial prefrontal cortex of ENU2 mice: an investigation of the cortical dopamine deficit in phenylketonuria. Journal of Inherited Metabolic Disease, 2012, 35, 1001-1009.	1.7	22
85	LY 171555-induced catalepsy and defensive behavior in four strains of mice suggest the involvement of different D2 dopamine receptor systems. Pharmacology Biochemistry and Behavior, 1990, 36, 327-331.	1.3	21
86	Distinct patterns of Fos expression induced by systemic amphetamine in the striatal complex of C57BL/6JICo and DBA/2JICo inbred strains of mice. Brain Research, 2004, 1025, 59-66.	1.1	21
87	Either the dorsal hippocampus or the dorsolateral striatum is selectively involved in consolidation of forced swim-induced immobility depending on genetic background. Neurobiology of Learning and Memory, 2014, 111, 49-55.	1.0	21
88	Passive Avoidance Behavior in Mice: Interaction Between Age and Genotype. Experimental Aging Research, 1986, 12, 107-109.	0.6	20
89	Genotype-dependent modulation of LY 171555-induced defensive behavior in the mouse. Psychopharmacology, 1989, 97, 166-168.	1.5	20
90	Impairments produced by amphetamine and stress on memory storage are reduced following a chronic stressful experience. Psychopharmacology, 1997, 129, 161-167.	1.5	19

#	Article	IF	CITATIONS
91	Strain-dependent effects of anandamide on memory consolidation in mice are antagonized by naltrexone. Behavioural Pharmacology, 1999, 10, 453-457.	0.8	19
92	Stress-induced activation of ventral tegmental mu-opioid receptors reduces accumbens dopamine tone by enhancing dopamine transmission in the medial pre-frontal cortex. Psychopharmacology, 2014, 231, 4099-4108.	1.5	19
93	A new therapy prevents intellectual disability in mouse with phenylketonuria. Molecular Genetics and Metabolism, 2018, 124, 39-49.	0.5	18
94	Nonhuman behavioral models in the genetics of disturbed behavior. Journal of Psychiatric Research, 1992, 26, 367-382.	1.5	17
95	Strain-dependent effects of cocaine on memory storage improvement induced by post-training physostigmine. Psychopharmacology, 1996, 123, 340-345.	1.5	17
96	What is mild in mild stress?. Psychopharmacology, 1997, 134, 344-346.	1.5	17
97	DeltaFosB accumulation in ventroâ€medial caudate underlies the induction but not the expression of behavioral sensitization by both repeated amphetamine and stress. European Journal of Neuroscience, 2008, 27, 191-201.	1.2	17
98	Functional and Dysfunctional Neuroplasticity in Learning to Cope with Stress. Brain Sciences, 2020, 10, 127.	1.1	17
99	Chronic stress reduces the analgesic but not the stimulant effect of morphine in mice. Brain Research, 1986, 380, 357-358.	1.1	16
100	The Relationship Between Specific Pavlovian Instrumental Transfer and Instrumental Reward Probability. Frontiers in Psychology, 2015, 6, 1697.	1.1	16
101	Pharmacological evidence for a protective role of the endogenous opioid system on electroshock-induced seizures in the mouse. Neuroscience Letters, 1985, 62, 241-247.	1.0	15
102	Pharmacological evidence of muscarinic-cholinergic sensitization following chronic stress. Psychopharmacology, 2001, 155, 144-147.	1.5	15
103	Predictable stress promotes place preference and low mesoaccumbens dopamine response. Physiology and Behavior, 2002, 75, 135-141.	1.0	15
104	Influence of Brain and Behavioral Lateralization in Brain Monoaminergic, Neuroendocrine, and Immune Stress Responses. Annals of the New York Academy of Sciences, 1994, 741, 271-282.	1.8	14
105	The effect of age on two kinds of aggressive behavior in inbred strains of mice. Developmental Psychobiology, 1985, 18, 477-482.	0.9	13
106	Post-training minaprine enhances memory storage in mice: involvement of D1 and D2 dopamine receptors. Psychopharmacology, 1994, 113, 476-480.	1.5	13
107	Effect of the interaction between the serotonin transporter gene and maternal environment on developing mouse brain. Behavioural Brain Research, 2011, 217, 188-194.	1.2	13
108	Positive and negative emotional arousal increases duration of memory traces: common and independent mechanisms. Frontiers in Behavioral Neuroscience, 2011, 5, 86.	1.0	13

#	Article	IF	CITATIONS
109	LY 171555-induced hyperdefensiveness in the mouse does not implicate benzodiazepine receptors. Psychopharmacology, 1991, 103, 449-454.	1.5	12
110	Genetic Up-Regulation or Pharmacological Activation of the Na+/Ca2+ Exchanger 1 (NCX1) Enhances Hippocampal-Dependent Contextual and Spatial Learning and Memory. Molecular Neurobiology, 2020, 57, 2358-2376.	1.9	11
111	Association between striatal accumulation of FosB/ΔFosB and long-term psychomotor sensitization to amphetamine in mice depends on the genetic background. Behavioural Brain Research, 2011, 217, 155-164.	1.2	10
112	Positive emotional arousal increases duration of memory traces: Different role of dopamine D1 receptor and β-adrenoceptor activation. Pharmacology Biochemistry and Behavior, 2014, 122, 158-163.	1.3	10
113	Effects of subchronic minaprine on dopamine release in the ventral striatum and on immobility in the forced swimming test. Neuroscience Letters, 1994, 166, 69-72.	1.0	9
114	Strain-dependent differences in hippocampal glucocorticoid binding capacity and active avoidance in the mouse. Behavioural Brain Research, 1990, 37, 185-188.	1.2	8
115	Effects of the NMDA-antagonist, MK-801, on stress-induced alterations of dopamine dependent behavior. Psychopharmacology, 1995, 117, 313-317.	1.5	8
116	Cortical and subcortical distribution of ionotropic purinergic receptor subunit type 1 (P2X1R) immunoreactive neurons in the rat forebrain. Neuroscience, 2008, 151, 791-801.	1.1	7
117	Altered consolidation of extinction-like inhibitory learning in genotype-specific dysfunctional coping fostered by chronic stress in mice. Behavioural Brain Research, 2016, 315, 23-35.	1.2	7
118	Norepinephrine in the Medial Pre-frontal Cortex Supports Accumbens Shell Responses to a Novel Palatable Food in Food-Restricted Mice Only. Frontiers in Behavioral Neuroscience, 2018, 12, 7.	1.0	7
119	Behavioral effects of RO 41-9067: A novel D2 dopamine receptor agonist. Drug Development Research, 1992, 27, 425-433.	1.4	6
120	Animal models of liability to post-traumatic stress disorder: going beyond fear memory. Behavioural Pharmacology, 2019, 30, 122-129.	0.8	6
121	Opposite strain-dependent differences for intermale aggressive behavior elicited by individual housing and housing with a female in the mouse. Aggressive Behavior, 1994, 20, 305-314.	1.5	5
122	Immunoreactive neurons in the brain of two mouse strains after incubation with an antiserum recognizing Asp-Val-Val-Gly.NH2 (DVVG), the C-terminal fragment of (D-Ala2)-deltorphin I. Journal of Chemical Neuroanatomy, 2002, 24, 189-198.	1.0	5
123	Early life adversity affecting the attachment bond alters ventral tegmental area transcriptomic patterning and behavior almost exclusively in female mice. Neurobiology of Stress, 2021, 15, 100406.	1.9	5
124	Role of Stress-Related Dopamine Transmission in Building and Maintaining a Protective Cognitive Reserve. Brain Sciences, 2022, 12, 246.	1.1	5
125	RISC RNA sequencing in the Dorsal RaphÃ reveals microRNAs regulatory activities associated with behavioral and functional adaptations to chronic stress. Brain Research, 2020, 1736, 146763.	1.1	4
126	Opposite genotype-specific effects of serotoninergic treatments on Pavlovian Conditioned Approach in mice of two inbred strains C57 BL/6J and DBA/2J. Behavioural Pharmacology, 2021, 32, 392-403.	0.8	4

#	Article	IF	CITATIONS
127	Intellectual Disability and Brain Creatine Deficit: Phenotyping of the Genetic Mouse Model for GAMT Deficiency. Genes, 2021, 12, 1201.	1.0	4
128	Interactions Between Experience, Genotype and Sex in the Development of Individual Coping Strategies. Frontiers in Behavioral Neuroscience, 2021, 15, 785739.	1.0	4
129	Partial extinction of a conditioned context enhances preference for elements previously associated with cocaine but not with chocolate. Physiology and Behavior, 2013, 120, 1-10.	1.0	3
130	Of genes, environment, and destiny. Behavioral and Brain Sciences, 1999, 22, 519-520.	0.4	2
131	Behavioral Effects of Manipulations of the Olfactory Environment in Developing Mice: Involvement of the Dopaminergic System. , 1990, , 59-71.		2
132	Genotype-Dependent Adaptation of Brain Dopamine System to Stress. , 1990, , 171-182.		2
133	Repetitive and Inflexible Active Coping and Addiction-like Neuroplasticity in Stressed Mice of a Helplessness–Resistant Inbred Strain. Behavioral Sciences (Basel, Switzerland), 2021, 11, 174.	1.0	2
134	Social Behavior of the House Mouse: A Potential Model for Preclinical Studies on Stress. , 1990, , 31-40.		0