Hefang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1812063/publications.pdf

Version: 2024-02-01

1040056 794594 22 356 9 19 citations h-index g-index papers 22 22 22 503 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	H ₃ PW ₁₂ O ₄₀ /mpg-C ₃ N ₄ as an efficient and reusable bifunctional catalyst in one-pot oxidation–Knoevenagel condensation tandem reaction. Catalysis Science and Technology, 2017, 7, 405-417.	4.1	66
2	Coffee grounds derived N enriched microporous activated carbons: Efficient adsorbent for post-combustion CO2 capture and conversion. Journal of Colloid and Interface Science, 2020, 578, 491-499.	9.4	61
3	A novel bifunctional Pd–ZIF-8/rGO catalyst with spatially separated active sites for the tandem Knoevenagel condensation–reduction reaction. Catalysis Science and Technology, 2017, 7, 5572-5584.	4.1	60
4	<i>In situ</i> synthesis of Ni nanofibers <i>via</i> vacuum thermal reduction and their efficient catalytic properties for hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 11370-11376.	10.3	26
5	H ₅ PMo ₁₀ V ₂ O ₄₀ immobilized on functionalized chloromethylated polystyrene by electrostatic interactions: a highly efficient and recyclable heterogeneous catalyst for hydroxylation of benzene. Catalysis Science and Technology, 2016, 6, 8005-8015.	4.1	23
6	Mg–Al Mixed Oxide Derived from Hydrotalcites Prepared Using the Solvent-Free Method: A Stable Acid–Base Bifunctional Catalyst for Continuous-Flow Transesterification of Dimethyl Carbonate and Ethanol. Industrial & Engineering Chemistry Research, 2020, 59, 5591-5600.	3.7	18
7	Tobaccoâ€Stemâ€Derived Nitrogenâ€Enriched Hierarchical Porous Carbon for Highâ€Energy Supercapacitor. ChemistrySelect, 2021, 6, 532-537.	1.5	17
8	Preparation of PANI grafted at the edge of graphene oxide sheets and its adsorption of Pb(II) and methylene blue. Polymer Composites, 2018, 39, 1663-1673.	4.6	15
9	Graphene oxide edge grafting of polyaniline nanocomposite: an efficient adsorbent for methylene blue and methyl orange. Water Science and Technology, 2018, 77, 2751-2760.	2.5	11
10	The Synthesis of Ni–Cu Alloy Nanofibers via Vacuum Thermal Co-reduction Toward Hydrogen Generation from Hydrazine Decomposition. Catalysis Letters, 2019, 149, 77-83.	2.6	9
11	Tobacco stem-derived nitrogen-containing porous carbon with highly dispersed Ni–N sites as an efficient electrocatalyst for CO ₂ reduction to CO. New Journal of Chemistry, 2021, 45, 1063-1071.	2.8	9
12	Highly selective and stable ZrO2–Al2O3 for synthesis of dimethyl carbonate in reactive distillation. Chemical Papers, 2020, 74, 3503-3515.	2.2	7
13	Tobacco stem-derived N-enriched active carbon: efficient metal free catalyst for reduction of nitroarene. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 331-346.	1.7	7
14	Rich â^'NH ₂ Mesoporous gâ€C ₃ N ₄ Nanosheets Efficient for Cycloaddition of CO ₂ to Epoxides without Solvent and Coâ€Catalyst. ChemistrySelect, 2021, 6, 3712-3721.	1.5	6
15	Selective Synthesis of Ethyl Methyl Carbonate via Catalytic Reactive Distillation over Heterogeneous MgO/HZSMâ€5. ChemistrySelect, 2019, 4, 7366-7370.	1.5	5
16	Selective Adsorption of p â€Cresol from a Mixture of m â€Cresol and p â€Cresol over ZSMâ€5 with Controll Micro―and Mesoporosity. ChemistrySelect, 2019, 4, 8764-8770.	ed _{1.5}	4
17	Feâ€Doped Porous g ₃ N ₄ : An Efficient Electrocatalyst with Feâ€N Active Sites for Electrocatalytic Hydrogen Evolution Reaction under Alkaline Conditions. ChemistrySelect, 2022, 7, .	1.5	4
18	Oneâ€Pot Synthesis of Carbonâ€Based Solid Acid Polymer Catalyst: Efficient Catalysts for Liquidâ€Phase Nitration of Alkanes. ChemistrySelect, 2020, 5, 6652-6657.	1.5	3

#	Article	IF	CITATION
19	A Carbonâ∈Based Solid Acid Catalyst Prepared through a Oneâ∈Step Hydrothermal Carbonization: Efficient Catalysts for Liquidâ∈Phase Nitrification. ChemistrySelect, 2021, 6, 9323-9329.	1.5	2
20	Mesoporous Ni–Cu/WO _x /ZrO ₂ Catalyst with Highly Dispersed WO _{<i>x</i>} Clusters: Efficient Catalysts for Selective Hydroisomerization of Isobutane to <i>n</i> -Butane. Industrial & Description of Selective Hydroisomerization of Isobutane to <i>n</i> -Butane. Industrial & Description of Selective Hydroisomerization of Isobutane to <i>n</i> -Butane. Industrial & Description of Selective Hydroisomerization of Isobutane to <i>n</i> -Butane. Industrial & Description of Isobutane to <i>n</i> -Butane. Industrial	3.7	2
21	STUDY ON THE EFFECT OF N-METHYL-2-PYRROLIDONE IN THE DESULFURIZATION FROM LIQUIFIED PETROLEUM GAS. , 2004, , .		1
22	Bifunctional catalyst of mordenite―and aluminaâ€supported platinum for isobutane hydroisomerization to <i>n</i> i>a€butane. Canadian Journal of Chemical Engineering, 2022, 100, 1038-1049.	1.7	0