
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1812041/publications.pdf Version: 2024-02-01

DOD ATVIN

#	Article	IF	CITATIONS
1	Structure and Nanostructure in Ionic Liquids. Chemical Reviews, 2015, 115, 6357-6426.	23.0	1,793
2	Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nature Materials, 2014, 13, 979-987.	13.3	812
3	Mechanism of cationic surfactant adsorption at the solid–aqueous interface. Advances in Colloid and Interface Science, 2003, 103, 219-304.	7.0	557
4	Structure in Confined Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2007, 111, 5162-5168.	1.5	456
5	At the interface: solvation and designing ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 1709.	1.3	377
6	Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proceedings of the United States of America, 2017, 114, 5647-5652.	3.3	370
7	The Smallest Amphiphiles:  Nanostructure in Protic Room-Temperature Ionic Liquids with Short Alkyl Groups. Journal of Physical Chemistry B, 2008, 112, 4164-4166.	1.2	352
8	Double Layer Structure of Ionic Liquids at the Au(111) Electrode Interface: An Atomic Force Microscopy Investigation. Journal of Physical Chemistry C, 2011, 115, 6855-6863.	1.5	336
9	AFM and STM Studies on the Surface Interaction of [BMP]TFSA and [EMIm]TFSA lonic Liquids with Au(111). Journal of Physical Chemistry C, 2009, 113, 13266-13272.	1.5	305
10	Long range electrostatic forces in ionic liquids. Chemical Communications, 2017, 53, 1214-1224.	2.2	285
11	Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor. Physical Chemistry Chemical Physics, 2017, 19, 3297-3306.	1.3	272
12	Amphiphilicity determines nanostructure in protic ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 3237-3247.	1.3	270
13	Do solvation layers of ionic liquids influence electrochemical reactions?. Physical Chemistry Chemical Physics, 2010, 12, 1724.	1.3	240
14	An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction. Physical Chemistry Chemical Physics, 2011, 13, 6849.	1.3	224
15	The Nature of Hydrogen Bonding in Protic Ionic Liquids. Angewandte Chemie - International Edition, 2013, 52, 4623-4627.	7.2	208
16	Control of Nanoscale Friction on Gold in an Ionic Liquid by a Potential-Dependent Ionic Lubricant Layer. Physical Review Letters, 2012, 109, 155502.	2.9	201
17	The interface ionic liquid(s)/electrode(s): In situSTM and AFM measurements. Faraday Discussions, 2012, 154, 221-233.	1.6	176
18	Activity and thermal stability of lysozyme in alkylammonium formate ionic liquids—influence of cation modification. Green Chemistry, 2009, 11, 785.	4.6	173

#	Article	IF	CITATIONS
19	How Water Dissolves in Protic Ionic Liquids. Angewandte Chemie - International Edition, 2012, 51, 7468-7471.	7.2	173
20	Pronounced Structure in Confined Aprotic Room-Temperature Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 7049-7052.	1.2	169
21	Pronounced sponge-like nanostructure in propylammonium nitrate. Physical Chemistry Chemical Physics, 2011, 13, 13544.	1.3	166
22	Effect of alkyl chain length and anion species on the interfacial nanostructure of ionic liquids at the Au(111)–ionic liquid interface as a function of potential. Physical Chemistry Chemical Physics, 2013, 15, 14624.	1.3	163
23	Nanostructure of the Ionic Liquid–Graphite Stern Layer. ACS Nano, 2015, 9, 7608-7620.	7.3	156
24	Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes. Nature Materials, 2020, 19, 1096-1101.	13.3	156
25	Adsorption Kinetics and Structural Arrangements of Cationic Surfactants on Silica Surfaces. Langmuir, 2000, 16, 9374-9380.	1.6	154
26	An ionic liquid lubricant enables superlubricity to be "switched on―in situ using an electrical potential. Chemical Communications, 2014, 50, 4368.	2.2	154
27	Phase Behavior and Microstructure of Microemulsions with a Room-Temperature Ionic Liquid as the Polar Phase. Journal of Physical Chemistry B, 2007, 111, 9309-9316.	1.2	153
28	Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nature Materials, 2019, 18, 1350-1357.	13.3	144
29	The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. Biomaterials, 2012, 33, 6943-6951.	5.7	141
30	Ionic liquid lubrication: influence of ion structure, surface potential and sliding velocity. Physical Chemistry Chemical Physics, 2013, 15, 14616.	1.3	140
31	Structure and dynamics of the interfacial layer between ionic liquids and electrode materials. Journal of Molecular Liquids, 2014, 192, 44-54.	2.3	133
32	The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica–aqueous solution interface. Journal of Colloid and Interface Science, 2003, 266, 236-244.	5.0	129
33	Influence of Temperature and Molecular Structure on Ionic Liquid Solvation Layers. Journal of Physical Chemistry B, 2009, 113, 5961-5966.	1.2	123
34	Adsorbed and near surface structure of ionic liquids at a solid interface. Physical Chemistry Chemical Physics, 2013, 15, 3320.	1.3	114
35	Effect of Cation Alkyl Chain Length and Anion Type on Protic Ionic Liquid Nanostructure. Journal of Physical Chemistry C, 2014, 118, 13998-14008.	1.5	111
36	Self-Assembly of a Nonionic Surfactant at the Graphite/Ionic Liquid Interface. Journal of the American Chemical Society, 2005, 127, 11940-11941.	6.6	105

#	Article	IF	CITATIONS
37	Preparation of Aqueous Core/Polymer Shell Microcapsules by Internal Phase Separation. Macromolecules, 2004, 37, 7979-7985.	2.2	102
38	Mechanical derivation of functional myotubes from adipose-derived stem cells. Biomaterials, 2012, 33, 2482-2491.	5.7	99
39	Specific heat control of nanofluids: A critical review. International Journal of Thermal Sciences, 2016, 107, 25-38.	2.6	97
40	Rheology of Protic Ionic Liquids and Their Mixtures. Journal of Physical Chemistry B, 2013, 117, 13930-13935.	1.2	94
41	Propylammonium Nitrate as a Solvent for Amphiphile Self-Assembly into Micelles, Lyotropic Liquid Crystals, and Microemulsions. Journal of Physical Chemistry B, 2010, 114, 1350-1360.	1.2	93
42	lon structure controls ionic liquid near-surface and interfacial nanostructure. Chemical Science, 2015, 6, 527-536.	3.7	93
43	Adsorption of 12-s-12 Gemini Surfactants at the Silicaâ^'Aqueous Solution Interface. Journal of Physical Chemistry B, 2003, 107, 2978-2985.	1.2	87
44	Surprising Particle Stability and Rapid Sedimentation Rates in an Ionic Liquid. Journal of Physical Chemistry Letters, 2010, 1, 64-68.	2.1	82
45	Effect of cation alkyl chain length on surface forces and physical properties in deep eutectic solvents. Journal of Colloid and Interface Science, 2017, 494, 373-379.	5.0	82
46	lonic liquid nanotribology: mica–silica interactions in ethylammonium nitrate. Physical Chemistry Chemical Physics, 2012, 14, 5147-5152.	1.3	80
47	3-Dimensional atomic scale structure of the ionic liquid–graphite interface elucidated by AM-AFM and quantum chemical simulations. Nanoscale, 2014, 6, 8100-8106.	2.8	78
48	Structural and aggregate analyses of (Li salt + glyme) mixtures: the complex nature of solvate ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 22321-22335.	1.3	78
49	Structure and Self Assembly of Pluronic Amphiphiles in Ethylammonium Nitrate and at the Silica Surface. Journal of Physical Chemistry B, 2009, 113, 12201-12213.	1.2	77
50	Surface Nanobubbles in Nonaqueous Media: Looking for Nanobubbles in DMSO, Formamide, Propylene Carbonate, Ethylammonium Nitrate, and Propylammonium Nitrate. ACS Nano, 2015, 9, 7596-7607.	7.3	77
51	Adsorbed and near-surface structure of ionic liquids determines nanoscale friction. Chemical Communications, 2013, 49, 6797.	2.2	71
52	Effect of dissolved LiCl on the ionic liquid–Au(111) electrical double layer structure. Chemical Communications, 2012, 48, 10246.	2.2	70
53	Amphiphilic Self-Assembly of Alkanols in Protic Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 9983-9990.	1.2	68
54	Nanostructure of the deep eutectic solvent/platinum electrode interface as a function of potential and water content. Nanoscale Horizons, 2019, 4, 158-168.	4.1	67

ROB Ατκιν

#	Article	IF	CITATIONS
55	Combined STM, AFM, and DFT Study of the Highly Ordered Pyrolytic Graphite/1-Octyl-3-methyl-imidazolium Bis(trifluoromethylsulfonyl)imide Interface. Journal of Physical Chemistry C, 2014, 118, 10833-10843.	1.5	65
56	Spontaneous vesicle formation in a deep eutectic solvent. Soft Matter, 2016, 12, 1645-1648.	1.2	64
57	Low cost ionic liquid–water mixtures for effective extraction of carbohydrate and lipid from algae. Faraday Discussions, 2017, 206, 93-112.	1.6	64
58	Structure of the Ethylammonium Nitrate Surface: An X-ray Reflectivity and Vibrational Sum Frequency Spectroscopy Study. Langmuir, 2010, 26, 8282-8288.	1.6	62
59	Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures. Fuel, 2017, 202, 296-306.	3.4	62
60	Nanostructure of [Li(G4)] TFSI and [Li(G4)] NO ₃ solvate ionic liquids at HOPG and Au(111) electrode interfaces as a function of potential. Physical Chemistry Chemical Physics, 2015, 17, 325-333.	1.3	61
61	Ionic Liquid Nanotribology: Stiction Suppression and Surface Induced Shear Thinning. Langmuir, 2012, 28, 9967-9976.	1.6	60
62	Physicochemical interactions of ionic liquids with coal; the viability of ionic liquids for pre-treatments in coal liquefaction. Fuel, 2015, 143, 244-252.	3.4	59
63	Ionic Liquid Lubrication of Stainless Steel: Friction is Inversely Correlated with Interfacial Liquid Nanostructure. ACS Sustainable Chemistry and Engineering, 2017, 5, 11737-11743.	3.2	59
64	Tribotronic control of friction in oil-based lubricants with ionic liquid additives. Physical Chemistry Chemical Physics, 2016, 18, 23657-23662.	1.3	58
65	Nanostructure of Deep Eutectic Solvents at Graphite Electrode Interfaces as a Function of Potential. Journal of Physical Chemistry C, 2016, 120, 2225-2233.	1.5	58
66	Amphiphilically Nanostructured Deep Eutectic Solvents. Journal of Physical Chemistry Letters, 2018, 9, 3922-3927.	2.1	57
67	Electrical Double Layer Structure in Ionic Liquids and Its Importance for Supercapacitor, Battery, Sensing, and Lubrication Applications. Journal of Physical Chemistry C, 2021, 125, 13707-13720.	1.5	56
68	In situ STM, AFM and DTS study of the interface 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate/Au(111). Electrochimica Acta, 2012, 82, 48-59.	2.6	53
69	Bulk nanostructure of the prototypical â€~good' and â€~poor' solvate ionic liquids [Li(G4)][TFSI] and [Li(G4)][NO ₃]. Physical Chemistry Chemical Physics, 2016, 18, 17224-17236.	1.3	49
70	lonic Liquid Adsorption and Nanotribology at the Silica–Oil Interface: Hundred-Fold Dilution in Oil Lubricates as Effectively as the Pure Ionic Liquid. Journal of Physical Chemistry Letters, 2014, 5, 4095-4099.	2.1	48
71	In Situ Atomic Force Microscopic Studies of the Interfacial Multilayer Nanostructure of LiTFSI–[Py _{1,Â4}]TFSI on Au(111): Influence of Li ⁺ Ion Concentration on the Au(111)/IL Interface. Journal of Physical Chemistry C, 2015, 119, 16734-16742.	1.5	48
72	Conformation of Poly(ethylene oxide) Dissolved in Ethylammonium Nitrate. Journal of Physical Chemistry B, 2011, 115, 648-652.	1.2	47

#	Article	IF	CITATIONS
73	Influence of alkyl chain length and anion species on ionic liquid structure at the graphite interface as a function of applied potential. Journal of Physics Condensed Matter, 2014, 26, 284115.	0.7	47
74	Addition of low concentrations of an ionic liquid to a base oil reduces friction over multiple length scales: a combined nano- and macrotribology investigation. Physical Chemistry Chemical Physics, 2016, 18, 6541-6547.	1.3	46
75	Nanostructured ionic liquids and their solutions: Recent advances and emerging challenges. Current Opinion in Green and Sustainable Chemistry, 2018, 12, 27-32.	3.2	46
76	The origin of surfactant amphiphilicity and self-assembly in protic ionic liquids. Chemical Science, 2015, 6, 6189-6198.	3.7	45
77	Mixing cations with different alkyl chain lengths markedly depresses the melting point in deep eutectic solvents formed from alkylammonium bromide salts and urea. Chemical Communications, 2017, 53, 2375-2377.	2.2	45
78	Dissolution and suspension of asphaltenes with ionic liquids. Fuel, 2019, 238, 129-138.	3.4	45
79	Assessment of the Density Functional Tight Binding Method for Protic Ionic Liquids. Journal of Chemical Theory and Computation, 2014, 10, 4633-4643.	2.3	44
80	Solvation of Inorganic Nitrate Salts in Protic Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 21215-21225.	1.5	44
81	Modification of lignites via low temperature ionic liquid treatment. Fuel Processing Technology, 2017, 155, 51-58.	3.7	44
82	Switchable long-range double layer force observed in a protic ionic liquid. Chemical Communications, 2017, 53, 647-650.	2.2	44
83	Effect of Deep Eutectic Solvent Nanostructure on Phospholipid Bilayer Phases. Langmuir, 2017, 33, 6878-6884.	1.6	43
84	Probing the protic ionic liquid surface using X-ray reflectivity. Physical Chemistry Chemical Physics, 2011, 13, 20828.	1.3	41
85	Effect of ion structure on nanoscale friction in protic ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 16651.	1.3	41
86	The Doubleâ€Faced Nature of Hydrogen Bonding in Hydroxyâ€Functionalized Ionic Liquids Shown by Neutron Diffraction and Molecular Dynamics Simulations. Angewandte Chemie - International Edition, 2019, 58, 12887-12892.	7.2	40
87	Digital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness. Advanced Functional Materials, 2014, 24, 4922-4926.	7.8	39
88	Influence of Water on the Interfacial Nanostructure and Wetting of [Rmim][NTf2] Ionic Liquids at Mica Surfaces. Langmuir, 2016, 32, 8818-8825.	1.6	39
89	Nanostructure of an ionic liquid–glycerol mixture. Physical Chemistry Chemical Physics, 2014, 16, 13182-13190.	1.3	37
90	Scattering from ionic liquids. Current Opinion in Colloid and Interface Science, 2015, 20, 282-292.	3.4	37

#	Article	IF	CITATIONS
91	Metal ion adsorption at the ionic liquid–mica interface. Nanoscale, 2016, 8, 906-914.	2.8	36
92	Interactions between vitrinite and inertinite-rich coals and the ionic liquid – [bmim][Cl]. Fuel, 2014, 119, 214-218.	3.4	35
93	Combined Nano- and Macrotribology Studies of Titania Lubrication Using the Oil-Ionic Liquid Mixtures. ACS Sustainable Chemistry and Engineering, 2016, 4, 5005-5012.	3.2	35
94	Molecular Resolution in situ Imaging of Spontaneous Graphene Exfoliation. Journal of Physical Chemistry Letters, 2016, 7, 3118-3122.	2.1	34
95	The Effect of Ionic Liquid Hydrophobicity and Solvent Miscibility on Pluronic Amphiphile Self-Assembly. Journal of Physical Chemistry B, 2013, 117, 14568-14575.	1.2	32
96	Ionic liquid nanostructure enables alcohol self assembly. Physical Chemistry Chemical Physics, 2016, 18, 12797-12809.	1.3	32
97	In situ scanning tunneling microscopy (STM), atomic force microscopy (AFM) and quartz crystal microbalance (EQCM) studies of the electrochemical deposition of tantalum in two different ionic liquids with the 1-butyl-1-methylpyrrolidinium cation. Electrochimica Acta, 2016, 197, 374-387.	2.6	31
98	Surfactant-Free "Emulsions―Generated by Freezeâ^'Thaw. Langmuir, 2004, 20, 5673-5678.	1.6	30
99	Nanostructure–Thermal Conductivity Relationships in Protic Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 12017-12024.	1.2	30
100	Transfer stamping of human mesenchymal stem cell patches using thermally expandable hydrogels with tunable cell-adhesive properties. Biomaterials, 2015, 54, 44-54.	5.7	30
101	Conformation of poly(ethylene oxide) dissolved in the solvate ionic liquid [Li(G4)]TFSI. Physical Chemistry Chemical Physics, 2015, 17, 14872-14878.	1.3	30
102	Boundary layer friction of solvate ionic liquids as a function of potential. Faraday Discussions, 2017, 199, 311-322.	1.6	30
103	The Ionic Liquid Cholinium Arginate Is an Efficient Solvent for Extracting High-Value <i>Nannochloropsis</i> sp. Lipids. ACS Sustainable Chemistry and Engineering, 2019, 7, 2538-2544.	3.2	30
104	Surface structure of a "non-amphiphilic―protic ionic liquid. Physical Chemistry Chemical Physics, 2012, 14, 5106.	1.3	29
105	Investigations into Physicochemical Changes in Thermal Coals during Low-Temperature Ionic Liquid Treatment. Energy & Fuels, 2015, 29, 7080-7088.	2.5	29
106	Core–shell particles having silica cores and pH-responsive poly(vinylpyridine) shells. Soft Matter, 2005, 1, 160.	1.2	28
107	Weighing the surface charge of an ionic liquid. Nanoscale, 2015, 7, 16039-16045.	2.8	28
108	Is the boundary layer of an ionic liquid equally lubricating at higher temperature?. Physical Chemistry Chemical Physics, 2016, 18, 9232-9239.	1.3	28

#	Article	IF	CITATIONS
109	Amphiphilic nanostructure in choline carboxylate and amino acid ionic liquids and solutions. Physical Chemistry Chemical Physics, 2020, 22, 3490-3498.	1.3	28
110	Nonionic Surfactant Adsorption at the Ethylammonium Nitrate Surface: A Neutron Reflectivity and Vibrational Sum Frequency Spectroscopy Study. Langmuir, 2010, 26, 8313-8318.	1.6	27
111	Compact Poly(ethylene oxide) Structures Adsorbed at the Ethylammonium Nitrateâ^'Silica Interface. Langmuir, 2011, 27, 3541-3549.	1.6	27
112	The thermoelectrochemistry of lithium–glyme solvate ionic liquids: towards waste heat harvesting. Physical Chemistry Chemical Physics, 2016, 18, 20768-20777.	1.3	27
113	Effect of protic ionic liquid nanostructure on phospholipid vesicle formation. Soft Matter, 2017, 13, 1364-1370.	1.2	27
114	Surfactant Adsorption at the Surface of Mixed Ionic Liquids and Ionic Liquid Water Mixtures. Langmuir, 2012, 28, 13224-13231.	1.6	26
115	Molecular Scale Characterization of the Titaniaâ `Dyeâ `Solvent Interface in Dye-Sensitized Solar Cells. Langmuir, 2010, 26, 9612-9616.	1.6	25
116	Micelle Structure of Novel Diblock Polyethers in Water and Two Protic Ionic Liquids (EAN and PAN). Macromolecules, 2015, 48, 1843-1851.	2.2	25
117	Electro-Responsive Surface Composition and Kinetics of an Ionic Liquid in a Polar Oil. Langmuir, 2019, 35, 15692-15700.	1.6	25
118	A comparative AFM study of the interfacial nanostructure in imidazolium or pyrrolidinium ionic liquid electrolytes for zinc electrochemical systems. Physical Chemistry Chemical Physics, 2016, 18, 29337-29347.	1.3	24
119	Catanionic Surfactant Self-Assembly in Protic Ionic Liquids. Journal of Physical Chemistry Letters, 2020, 11, 5926-5931.	2.1	23
120	Potential-Dependent Superlubricity of Ionic Liquids on a Graphite Surface. Journal of Physical Chemistry C, 2021, 125, 3940-3947.	1.5	23
121	Nanotribology of Ionic Liquids as Lubricant Additives for Alumina Surfaces. Journal of Physical Chemistry C, 2017, 121, 28348-28353.	1.5	23
122	Small angle neutron scattering study of the conformation of poly(ethylene oxide) dissolved in deep eutectic solvents. Journal of Colloid and Interface Science, 2017, 506, 486-492.	5.0	22
123	Combined friction force microscopy and quantum chemical investigation of the tribotronic response at the propylammonium nitrate–graphite interface. Physical Chemistry Chemical Physics, 2015, 17, 16047-16052.	1.3	21
124	Pinewood pyrolysis occurs at lower temperatures following treatment with choline-amino acid ionic liquids. Fuel, 2019, 236, 306-312.	3.4	21
125	Interactions of adsorbed poly(ethylene oxide) mushrooms with a bare silica–ionic liquid interface. Physical Chemistry Chemical Physics, 2011, 13, 13479.	1.3	20
126	Influence of Hydrogen Bonding between Ions of Like Charge on the Ionic Liquid Interfacial Structure at a Mica Surface. Journal of Physical Chemistry Letters, 2019, 10, 7368-7373.	2.1	20

#	Article	IF	CITATIONS
127	Nano- and Macroscale Study of the Lubrication of Titania Using Pure and Diluted Ionic Liquids. Frontiers in Chemistry, 2019, 7, 287.	1.8	20
128	Shear dependent viscosity of poly(ethylene oxide) in two protic ionic liquids. Journal of Colloid and Interface Science, 2014, 430, 56-60.	5.0	19
129	The High Performance of Choline Arginate for Biomass Pretreatment Is Due to Remarkably Strong Hydrogen Bonding by the Anion. ACS Sustainable Chemistry and Engineering, 2018, 6, 4115-4121.	3.2	18
130	Effect of Hydrogen Bonding between lons of Like Charge on the Boundary Layer Friction of Hydroxy-Functionalized Ionic Liquids. Journal of Physical Chemistry Letters, 2020, 11, 3905-3910.	2.1	18
131	Solvophobicity and amphiphilic self-assembly in neoteric and nanostructured solvents. Current Opinion in Colloid and Interface Science, 2020, 45, 83-96.	3.4	17
132	Effect of dissolved LiCl on the ionic liquid–Au(111) interface: an <i>in situ</i> STM study. Journal of Physics Condensed Matter, 2014, 26, 284111.	0.7	16
133	Kamlet–Taft Solvation Parameters of Solvate Ionic Liquids. ChemPhysChem, 2016, 17, 3096-3101.	1.0	16
134	Ionic Liquid Adsorption at the Silica–Oil Interface Revealed by Neutron Reflectometry. Journal of Physical Chemistry C, 2018, 122, 24077-24084.	1.5	16
135	Catanionic and chain-packing effects on surfactant self-assembly in the ionic liquid ethylammonium nitrate. Journal of Colloid and Interface Science, 2019, 540, 515-523.	5.0	16
136	Nanotribology of hydrogels with similar stiffness but different polymer and crosslinker concentrations. Journal of Colloid and Interface Science, 2020, 563, 347-353.	5.0	16
137	Effect of Protic Ionic Liquid and Surfactant Structure on Partitioning of Polyoxyethylene Nonâ€ionic Surfactants. ChemPhysChem, 2014, 15, 2485-2489.	1.0	15
138	Partially Naked Fluoride in Solvate Ionic Liquids. Journal of Physical Chemistry Letters, 2018, 9, 6662-6667.	2.1	15
139	Structural Design of Ionic Liquids for Optimizing Aromatic Dissolution. ChemSusChem, 2019, 12, 270-274.	3.6	15
140	Silica Particle Stability and Settling in Protic Ionic Liquids. Langmuir, 2014, 30, 1506-1513.	1.6	14
141	Near surface properties of mixtures of propylammonium nitrate with n-alkanols 1. Nanostructure. Physical Chemistry Chemical Physics, 2015, 17, 26621-26628.	1.3	14
142	Structural effect of glyme–Li+ salt solvate ionic liquids on the conformation of poly(ethylene oxide). Physical Chemistry Chemical Physics, 2016, 18, 14894-14903.	1.3	14
143	Effect of Variation in Anion Type and Glyme Length on the Nanostructure of the Solvate Ionic Liquid/Graphite Interface as a Function of Potential. Journal of Physical Chemistry C, 2017, 121, 15728-15734.	1.5	14
144	Dissolved chloride markedly changes the nanostructure of the protic ionic liquids propylammonium and ethanolammonium nitrate. Physical Chemistry Chemical Physics, 2016, 18, 17169-17182.	1.3	13

#	Article	IF	CITATIONS
145	Liquid nanostructure of choline lysinate with water and a model lignin residue. Green Chemistry, 2021, 23, 856-866.	4.6	13
146	Self-assembled nanostructure induced in deep eutectic solvents via an amphiphilic hydrogen bond donor. Journal of Colloid and Interface Science, 2022, 616, 121-128.	5.0	13
147	Near surface properties of mixtures of propylammonium nitrate with n-alkanols 2. Nanotribology and fluid dynamics. Physical Chemistry Chemical Physics, 2015, 17, 26629-26637.	1.3	12
148	Effect of Lithium Ions on Rheology and Interfacial Forces in Ethylammonium Nitrate and Ethanolammonium Nitrate. Journal of Physical Chemistry C, 2016, 120, 26960-26967.	1.5	12
149	Unusual origin of choline phenylalaninate ionic liquid nanostructure. Journal of Molecular Liquids, 2020, 319, 114327.	2.3	12
150	Nanostructure in amino acid ionic molecular hybrid solvents. Journal of Molecular Liquids, 2022, 351, 118599.	2.3	12
151	Dichotomous Well-defined Nanostructure with Weakly Arranged Ion Packing Explains the Solvency of Pyrrolidinium Acetate. Journal of Physical Chemistry B, 2017, 121, 6610-6617.	1.2	11
152	The Au(111)/IL interfacial nanostructure in the presence of precursors and its influence on the electrodeposition process. Faraday Discussions, 2018, 206, 459-473.	1.6	11
153	Liquid Structure of Single and Mixed Cation Alkylammonium Bromide Urea Deep Eutectic Solvents. Journal of Physical Chemistry B, 2020, 124, 8651-8664.	1.2	11
154	Liquid Nanostructure of Cholinium Argininate Biomass Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 2880-2890.	3.2	11
155	Surface Composition of Mixtures of Ethylammonium Nitrate, Ethanolammonium Nitrate, and Water. Australian Journal of Chemistry, 2012, 65, 1554.	0.5	10
156	Ionic Liquids as Grease Base Liquids. Lubricants, 2017, 5, 31.	1.2	10
157	DTAB micelle formation in ionic liquid/water mixtures is determined by ionic liquid cation structure. Journal of Colloid and Interface Science, 2019, 552, 597-603.	5.0	10
158	Aqueous choline amino acid deep eutectic solvents. Journal of Chemical Physics, 2021, 154, 214504.	1.2	10
159	Developments in Using Scanning Probe Microscopy To Study Molecules on Surfaces — From Thin Films and Single-Molecule Conductivity to Drug–Living Cell Interactions. Australian Journal of Chemistry, 2006, 59, 359.	0.5	9
160	Amplitude-Modulated Atomic Force Microscopy Reveals the Near Surface Nanostructure of Surfactant Sponge (L ₃) and Lamellar (L _α) Phases. Langmuir, 2015, 31, 5513-5520.	1.6	8
161	Nanostructure of the H-terminated p-Si(111)/ionic liquid interface and the effect of added lithium salt. Physical Chemistry Chemical Physics, 2017, 19, 54-58.	1.3	8
162	Passivation by pyridine-induced PbI ₂ in methylammonium lead iodide perovskites. RSC Advances, 2020, 10, 23829-23833.	1.7	8

#	Article	IF	CITATIONS
163	Physicochemical study of diethylmethylammonium methanesulfonate under anhydrous conditions. Journal of Chemical Physics, 2020, 152, 234504.	1.2	8
164	Interfacial nanostructure and friction of a polymeric ionic liquid-ionic liquid mixture as a function of potential at Au(1 1 1) electrode interface. Journal of Colloid and Interface Science, 2022, 606, 1170-1178.	5.0	8
165	Nanostructure, electrochemistry and potential-dependent lubricity of the catanionic surface-active ionic liquid [P6,6,6,14] [AOT]. Journal of Colloid and Interface Science, 2022, 608, 2120-2130.	5.0	8
166	Interfacial and Bulk Nanostructure of Liquid Polymer Nanocomposites. Langmuir, 2015, 31, 3763-3770.	1.6	7
167	Poly(ethylene oxide) Mushrooms Adsorbed at Silica–Ionic Liquid Interfaces Reduce Friction. Langmuir, 2016, 32, 1947-1954.	1.6	7
168	A dendronised polymer architecture breaks the conventional inverse relationship between porosity and mechanical properties of hydrogels. Chemical Communications, 2021, 57, 773-776.	2.2	7
169	Potential Dependence of Surfactant Adsorption at the Graphite Electrode/Deep Eutectic Solvent Interface. Journal of Physical Chemistry Letters, 2019, 10, 5331-5337.	2.1	6
170	Effect of halides on the solvation of poly(ethylene oxide) in the ionic liquid propylammonium nitrate. Journal of Colloid and Interface Science, 2019, 534, 649-654.	5.0	6
171	Ambient energy dispersion and long-term stabilisation of large graphene sheets from graphite using a surface energy matched ionic liquidâ€. Journal of Ionic Liquids, 2021, 1, 100001.	1.0	6
172	Bulk and Interfacial Nanostructure in Protic Room Temperature Ionic Liquids. ACS Symposium Series, 2010, , 317-333.	0.5	5
173	Die zweigesichtige Natur der Wasserstoffbrückenbindung in hydroxylfunktionalisierten ionischen Flüssigkeiten, offenbart durch Neutronendiffraktometrie und Molekulardynamikâ€&imulation. Angewandte Chemie, 2019, 131, 13019-13024.	1.6	5
174	Polycation radius of gyration in a polymeric ionic liquid (PIL): the PIL melt is not a theta solvent. Physical Chemistry Chemical Physics, 2022, 24, 4526-4532.	1.3	5
175	Adsorption of Polyether Block Copolymers at Silica–Water and Silica–Ethylammonium Nitrate Interfaces. Langmuir, 2015, 31, 7025-7031.	1.6	4
176	pH-dependent surface properties of the gallium nitride – Solution interface mapped by surfactant adsorption. Journal of Colloid and Interface Science, 2019, 556, 680-688.	5.0	4
177	pH-Dependent surface charge at the interfaces between aluminum gallium nitride (AlGaN) and aqueous solution revealed by surfactant adsorption. Journal of Colloid and Interface Science, 2021, 583, 331-339.	5.0	4
178	Conformation of poly(ethylene glycol) in aqueous cholinium amino acid hybrid solvents. Journal of Colloid and Interface Science, 2021, 602, 334-343.	5.0	4
179	Effects of surface oxidation on the pH-dependent surface charge of oxidized aluminum gallium nitride. Journal of Colloid and Interface Science, 2021, 603, 604-614.	5.0	3