Lingtong Zhi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1811326/publications.pdf

Version: 2024-02-01

		623574	839398
19	701	14	18
papers	citations	h-index	g-index
19	19	19	439
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A chimeric switch-receptor PD1-DAP10-41BB augments NK92-cell activation and killing for human lung Cancer H1299 Cell. Biochemical and Biophysical Research Communications, 2022, 600, 94-100.	1.0	2
2	Chimeric antigen receptorâ€modified macrophages trigger systemic antiâ€tumour immunity. Journal of Pathology, 2021, 253, 247-257.	2.1	42
3	Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Cellular Immunology, 2021, 369, 104436.	1.4	5
4	VEGF165b and its mutant demonstrate immunomodulatory, not merely anti-angiogenic functions, in tumor-bearing mice. Molecular Immunology, 2020, 122, 132-140.	1.0	5
5	A novel chimeric PD1-NKG2D-41BB receptor enhances antitumor activity of NK92 cells against human lung cancer H1299 cells by triggering pyroptosis. Molecular Immunology, 2020, 122, 200-206.	1.0	63
6	A novel bispecific chimeric PD1-DAP10/NKG2D receptor augments NK92-cell therapy efficacy for human gastric cancer SGC-7901 cell. Biochemical and Biophysical Research Communications, 2020, 523, 745-752.	1.0	15
7	Explore the activation efficiency of different ligand carriers on synNotch-based contact-dependent activation system. Turkish Journal of Biochemistry, 2020, 45, 817-823.	0.3	О
8	Structure-based rational design of a novel chimeric PD1-NKG2D receptor for natural killer cells. Molecular Immunology, 2019, 114, 108-113.	1.0	31
9	NPR-9 regulates the innate immune response in Caenorhabditis elegans by antagonizing the activity of AIB interneurons. Cellular and Molecular Immunology, 2018, 15, 27-37.	4.8	63
10	mir-355 Functions as An Important Link between p38 MAPK Signaling and Insulin Signaling in the Regulation of Innate Immunity. Scientific Reports, 2017, 7, 14560.	1.6	46
11	Graphene oxide induces canonical Wnt/β-catenin signaling-dependent toxicity in Caenorhabditis elegans. Carbon, 2017, 113, 122-131.	5.4	47
12	Value of <i>mir-247 </i> in warning of graphene oxide toxicity in nematode <i>Caenorhabditis elegans </i> . RSC Advances, 2017, 7, 52694-52701.	1.7	30
13	Molecular Control of Innate Immune Response to Pseudomonas aeruginosa Infection by Intestinal let-7 in Caenorhabditis elegans. PLoS Pathogens, 2017, 13, e1006152.	2.1	59
14	FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Scientific Reports, 2016, 6, 21485.	1.6	35
15	Wnt Ligands Differentially Regulate Toxicity and Translocation of Graphene Oxide through Different Mechanisms in Caenorhabditis elegans. Scientific Reports, 2016, 6, 39261.	1.6	43
16	p38 MAPK-SKN-1/Nrf signaling cascade is required for intestinal barrier against graphene oxide toxicity in <i>Caenorhabditis elegans</i> . Nanotoxicology, 2016, 10, 1469-1479.	1.6	73
17	microRNAs Involved in the Control of Innate Immunity in Candida Infected Caenorhabditis elegans. Scientific Reports, 2016, 6, 36036.	1.6	46
18	ACS-22, a protein homologous to mammalian fatty acid transport protein 4, is essential for the control of the toxicity and translocation of multi-walled carbon nanotubes in Caenorhabditis elegans. RSC Advances, 2016, 6, 4151-4159.	1.7	48

#	Article	IF	CITATIONS
19	Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1175-1184.	1.7	48