Giuseppe Deganutti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1811320/publications.pdf

Version: 2024-02-01

471509 434195 1,121 35 17 31 citations h-index g-index papers 46 46 46 1218 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature, 2018, 561, 492-497.	27.8	210
2	Activation of the GLP-1 receptor by a non-peptidic agonist. Nature, 2020, 577, 432-436.	27.8	119
3	Deciphering the Complexity of Ligand–Protein Recognition Pathways Using Supervised Molecular Dynamics (SuMD) Simulations. Journal of Chemical Information and Modeling, 2016, 56, 687-705.	5.4	88
4	Structure and Dynamics of Adrenomedullin Receptors AM ₁ and AM ₂ Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins. ACS Pharmacology and Translational Science, 2020, 3, 263-284.	4.9	71
5	Understanding allosteric interactions in G protein-coupled receptors using Supervised Molecular Dynamics: A prototype study analysing the human A3 adenosine receptor positive allosteric modulator LUF6000. Bioorganic and Medicinal Chemistry, 2015, 23, 4065-4071.	3.0	53
6	Molecular Signature for Receptor Engagement in the Metabolic Peptide Hormone Amylin. ACS Pharmacology and Translational Science, $2018,1,32\text{-}49.$	4.9	48
7	Structure and dynamics of the active Gs-coupled human secretin receptor. Nature Communications, 2020, 11, 4137.	12.8	46
8	Supervised molecular dynamics for exploring the druggability of the SARS-CoV-2 spike protein. Journal of Computer-Aided Molecular Design, 2021, 35, 195-207.	2.9	41
9	Exploring the recognition pathway at the human A _{2A} adenosine receptor of the endogenous agonist adenosine using supervised molecular dynamics simulations. MedChemComm, 2015, 6, 1081-1085.	3.4	36
10	Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies. Future Medicinal Chemistry, 2017, 9, 507-523.	2.3	30
11	Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. Nature Communications, 2022, 13, 92.	12.8	30
12	AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein–Ligand Association. ChemMedChem, 2018, 13, 522-531.	3.2	29
13	A Supervised Molecular Dynamics Approach to Unbiased Ligand–Protein Unbinding. Journal of Chemical Information and Modeling, 2020, 60, 1804-1817.	5.4	28
14	Comparison of the Human A _{2A} Adenosine Receptor Recognition by Adenosine and Inosine: New Insight from Supervised Molecular Dynamics Simulations. ChemMedChem, 2017, 12, 1319-1326.	3.2	26
15	Extracellular loops 2 and 3 of the calcitonin receptor selectively modify agonist binding and efficacy. Biochemical Pharmacology, 2018, 150, 214-244.	4.4	24
16	A2A and A2B adenosine receptors: The extracellular loop 2 determines high (A2A) or low affinity (A2B) for adenosine. Biochemical Pharmacology, 2020, 172, 113718.	4.4	24
17	Structural and functional diversity among agonist-bound states of the GLP-1 receptor. Nature Chemical Biology, 2022, 18, 256-263.	8.0	24
18	Selective activation of $\hat{\text{Gl}\pm\text{ob}}$ by an adenosine A1 receptor agonist elicits analgesia without cardiorespiratory depression. Nature Communications, 2022, 13, .	12.8	23

#	Article	IF	CITATIONS
19	Impact of protein–ligand solvation and desolvation on transition state thermodynamic properties of adenosine A2A ligand binding kinetics. In Silico Pharmacology, 2017, 5, 16.	3.3	20
20	Supporting the Identification of Novel Fragment-Based Positive Allosteric Modulators Using a Supervised Molecular Dynamics Approach: A Retrospective Analysis Considering the Human A2A Adenosine Receptor as a Key Example. Molecules, 2017, 22, 818.	3.8	19
21	Revisiting the Allosteric Regulation of Sodium Cation on the Binding of Adenosine at the Human A2A Adenosine Receptor: Insights from Supervised Molecular Dynamics (SuMD) Simulations. Molecules, 2019, 24, 2752.	3.8	14
22	Peeking at G-protein-coupled receptors through the molecular dynamics keyhole. Future Medicinal Chemistry, 2019, 11, 599-615.	2.3	11
23	Could the presence of sodium ion influence the accuracy and precision of the ligand-posing in the human A2A adenosine receptor orthosteric binding site using a molecular docking approach? Insights from Dockbench. Journal of Computer-Aided Molecular Design, 2018, 32, 1337-1346.	2.9	9
24	Deciphering the Agonist Binding Mechanism to the Adenosine A1 Receptor. ACS Pharmacology and Translational Science, 2021, 4, 314-326.	4.9	9
25	Molecular dynamics studies reveal structural and functional features of the SARSâ€CoVâ€2 spike protein. BioEssays, 2022, 44, .	2.5	9
26	Deconvoluting the Molecular Control of Binding and Signaling at the Amylin 3 Receptor: RAMP3 Alters Signal Propagation through Extracellular Loops of the Calcitonin Receptor. ACS Pharmacology and Translational Science, 2019, 2, 183-197.	4.9	8
27	Addressing free fatty acid receptor 1 (FFAR1) activation using supervised molecular dynamics. Journal of Computer-Aided Molecular Design, 2020, 34, 1181-1193.	2.9	8
28	Multisite Model of Allosterism for the Adenosine A1 Receptor. Journal of Chemical Information and Modeling, 2021, 61, 2001-2015.	5.4	8
29	Could Adenosine Recognize its Receptors with a Stoichiometry Other than 1 : 1?. Molecular Informatics, 2018, 37, e1800009.	2.5	7
30	Partial agonism improves the anti-hyperglycaemic efficacy of an oxyntomodulin-derived GLP-1R/GCGR co-agonist. Molecular Metabolism, 2021, 51, 101242.	6.5	7
31	New Insights into Key Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular Dynamics Simulations. Biomolecules, 2020, 10, 732.	4.0	5
32	Peptidomimeticâ€based approach toward inhibitors of microbial trimethylamine lyases. Chemical Biology and Drug Design, 2021, 97, 231-236.	3.2	5
33	Exploring Ligand Binding to Calcitonin Gene-Related Peptide Receptors. Frontiers in Molecular Biosciences, 2021, 8, 720561.	3.5	5
34	Insights into agonist-elicited activation of the human glucose-dependent insulinotropic polypeptide receptor. Biochemical Pharmacology, 2021, 192, 114715.	4.4	5
35	New Trends in Inspecting GPCRâ€ligand Recognition Process: the Contribution of the Molecular Modeling Section (MMS) at the University of Padova. Molecular Informatics, 2016, 35, 440-448.	2.5	3