Baodong Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/181127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chemistry, 2016, 197, 714-722.	4.2	275
2	Short-chain fatty acids in control of energy metabolism. Critical Reviews in Food Science and Nutrition, 2018, 58, 1243-1249.	5.4	275
3	Recent trends and applications of cellulose nanocrystals in food industry. Trends in Food Science and Technology, 2019, 93, 136-144.	7.8	166
4	Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects. Food Chemistry, 2014, 155, 311-318.	4.2	145
5	Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure. Food Chemistry, 2015, 186, 223-230.	4.2	141
6	Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food and Chemical Toxicology, 2017, 109, 1003-1009.	1.8	129
7	Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods. Food Chemistry, 2015, 186, 213-222.	4.2	120
8	Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosensors and Bioelectronics, 2015, 64, 367-372.	5.3	120
9	Lotus Seed Resistant Starch Regulates Gut Microbiota and Increases Short-Chain Fatty Acids Production and Mineral Absorption in Mice. Journal of Agricultural and Food Chemistry, 2017, 65, 9217-9225.	2.4	117
10	Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Scientific Reports, 2018, 8, 1321.	1.6	115
11	A Review on Konjac Glucomannan Gels: Microstructure and Application. International Journal of Molecular Sciences, 2017, 18, 2250.	1.8	104
12	Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties. International Journal of Biological Macromolecules, 2018, 120, 1461-1467.	3.6	104
13	Structural characterization of a novel neutral polysaccharide from Lentinus giganteus and its antitumor activity through inducing apoptosis. Carbohydrate Polymers, 2016, 154, 231-240.	5.1	95
14	Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction. Ultrasonics Sonochemistry, 2019, 52, 50-61.	3.8	91
15	A comprehensive review of the factors influencing the formation of retrograded starch. International Journal of Biological Macromolecules, 2021, 186, 163-173.	3.6	89
16	Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: a review. Phytochemistry Reviews, 2015, 14, 321-334.	3.1	87
17	Characterization and hypoglycemic activity of a β-pyran polysaccharides from bamboo shoot (Leleba) Tj ETQq1 :	I 0.784314 5.1	4 rgBT /Over
18	Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates. Ultrasonics Sonochemistry, 2020, 65, 105063.	3.8	78

2

#	Article	IF	CITATIONS
19	Effect of guar gum on the physicochemical properties and in vitro digestibility of lotus seed starch. Food Chemistry, 2019, 272, 286-291.	4.2	74
20	Properties of lotus seed starch–glycerin monostearin complexes formed by high pressure homogenization. Food Chemistry, 2017, 226, 119-127.	4.2	71
21	Effects of high pressure processing on gelation properties and molecular forces of myosin containing deacetylated konjac glucomannan. Food Chemistry, 2019, 291, 117-125.	4.2	70
22	Structural characteristics and emulsifying properties of myofibrillar protein-dextran conjugates induced by ultrasound Maillard reaction. Ultrasonics Sonochemistry, 2021, 72, 105458.	3.8	70
23	The in vitro effects of retrograded starch (resistant starch type 3) from lotus seed starch on the proliferation of Bifidobacterium adolescentis. Food and Function, 2013, 4, 1609.	2.1	66
24	Effect of high-intensity ultrasound irradiation on the stability and structural features of coconut-grain milk composite systems utilizing maize kernels and starch with different amylose contents. Ultrasonics Sonochemistry, 2019, 55, 135-148.	3.8	61
25	Structural properties and prebiotic activities of fractionated lotus seed resistant starches. Food Chemistry, 2018, 251, 33-40.	4.2	60
26	Microbial dynamics and flavor formation during the traditional brewing of Monascus vinegar. Food Research International, 2019, 125, 108531.	2.9	59
27	Insight into the characterization and digestion of lotus seed starch-tea polyphenol complexes prepared under high hydrostatic pressure. Food Chemistry, 2019, 297, 124992.	4.2	56
28	Chemical composition and nutritional function of olive (Olea europaea L.): a review. Phytochemistry Reviews, 2018, 17, 1091-1110.	3.1	55
29	Hypoglycemic effect of dietary fibers from bamboo shoot shell: An in vitro and in vivo study. Food and Chemical Toxicology, 2019, 127, 120-126.	1.8	53
30	Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Research International, 2018, 111, 265-271.	2.9	52
31	Effects of oligosaccharides on particle structure, pasting and thermal properties of wheat starch granules under different freezing temperatures. Food Chemistry, 2020, 315, 126209.	4.2	50
32	Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus (Nelumbo) Tj ETQq0 0 (D rgBT /Ove	erlock 10 Tf 5
33	Insight into the formation, structure and digestibility of lotus seed amylose-fatty acid complexes prepared by high hydrostatic pressure. Food and Chemical Toxicology, 2019, 128, 81-88.	1.8	48
34	Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato. Molecules, 2016, 21, 932.	1.7	45
35	Slowly digestible properties of lotus seed starch-glycerine monostearin complexes formed by high pressure homogenization. Food Chemistry, 2018, 252, 115-125.	4.2	45
36	Paste structure and rheological properties of lotus seed starch–glycerin monostearate complexes formed by high-pressure homogenization. Food Research International, 2018, 103, 380-389.	2.9	45

3

#	Article	IF	CITATIONS
37	In Vitro Antioxidant Activity and In Vivo Anti-Fatigue Effect of Sea Horse (Hippocampus) Peptides. Molecules, 2017, 22, 482.	1.7	43
38	Moisture distribution model describes the effect of water content on the structural properties of lotus seed resistant starch. Food Chemistry, 2019, 286, 449-458.	4.2	43
39	Influence of microwave vacuum drying on glass transition temperature, gelatinization temperature, physical and chemical qualities of lotus seeds. Food Chemistry, 2017, 228, 167-176.	4.2	42
40	Understanding the crystal structure of lotus seed amylose–long-chain fatty acid complexes prepared by high hydrostatic pressure. Food Research International, 2018, 111, 334-341.	2.9	42
41	Water migration depicts the effect of hydrocolloids on the structural and textural properties of lotus seed starch. Food Chemistry, 2020, 315, 126240.	4.2	42
42	Effects of microwave-vacuum pre-treatment with different power levels on the structural and emulsifying properties of lotus seed protein isolates. Food Chemistry, 2020, 311, 125932.	4.2	40
43	Oenological characteristics, amino acids and volatile profiles of Hongqu rice wines during pottery storage: Effects of high hydrostatic pressure processing. Food Chemistry, 2016, 203, 456-464.	4.2	39
44	The synthesis and characterization of a xanthan gum-acrylamide-trimethylolpropane triglycidyl ether hydrogel. Food Chemistry, 2019, 272, 574-579.	4.2	39
45	Structural and thermal properties of amylose–fatty acid complexes prepared via high hydrostatic pressure. Food Chemistry, 2018, 264, 172-179.	4.2	36
46	Lotus seed oligosaccharides at various dosages with prebiotic activity regulate gut microbiota and relieve constipation in mice. Food and Chemical Toxicology, 2019, 134, 110838.	1.8	36
47	pH-responsive poly (xanthan gum-g-acrylamide-g-acrylic acid) hydrogel: Preparation, characterization, and application. Carbohydrate Polymers, 2019, 210, 38-46.	5.1	36
48	An insight into the retrogradation behaviors and molecular structures of lotus seed starch-hydrocolloid blends. Food Chemistry, 2019, 295, 548-555.	4.2	36
49	Structural and physicochemical properties of lotus seed starch nanoparticles. International Journal of Biological Macromolecules, 2020, 157, 240-246.	3.6	36
50	Mathematical modeling and influence of ultrasonic pretreatment on microwave vacuum drying kinetics of lotus (<i>Nelumbo nucifera</i> Gaertn.) seeds. Drying Technology, 2017, 35, 553-563.	1.7	35
51	Polysaccharide fractions from Fortunella margarita affect proliferation of Bifidobacterium adolescentis ATCC 15703 and undergo structural changes following fermentation. International Journal of Biological Macromolecules, 2019, 123, 1070-1078.	3.6	35
52	Insight into the formation mechanism of lotus seed starch-lecithin complexes by dynamic high-pressure homogenization. Food Chemistry, 2020, 315, 126245.	4.2	35
53	Insights into the multi-scale structural properties and digestibility of lotus seed starch-chlorogenic acid complexes prepared by microwave irradiation. Food Chemistry, 2021, 361, 130171.	4.2	35
54	Effect of two-step microwave heating on the gelation properties of golden threadfin bream (Nemipterus virgatus) myosin. Food Chemistry, 2020, 328, 127104.	4.2	35

#	Article	IF	CITATIONS
55	Effect of fractionated lotus seed resistant starch on proliferation of Bifidobacterium longum and Lactobacillus delbrueckii subsp. bulgaricus and its structural changes following fermentation. Food Chemistry, 2018, 268, 134-142.	4.2	34
56	Polysaccharides isolated from <i>Laminaria japonica</i> attenuates gestational diabetes mellitus by regulating the gut microbiota in mice. Food Frontiers, 2021, 2, 208-217.	3.7	34
57	Effect of chitosan on the digestibility and molecular structural properties of lotus seed starch. Food and Chemical Toxicology, 2019, 133, 110731.	1.8	32
58	Effects of pullulanase pretreatment on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes. Carbohydrate Polymers, 2020, 240, 116324.	5.1	32
59	Structural and physicochemical properties of lotus seed starch nanoparticles prepared using ultrasonic-assisted enzymatic hydrolysis. Ultrasonics Sonochemistry, 2020, 68, 105199.	3.8	30
60	Genome-wide transcriptional changes in type 2 diabetic mice supplemented with lotus seed resistant starch. Food Chemistry, 2018, 264, 427-434.	4.2	29
61	Structural and physicochemical properties of ginger (Rhizoma curcumae longae) starch and resistant starch: A comparative study. International Journal of Biological Macromolecules, 2020, 144, 67-75.	3.6	29
62	Extraction optimization, structure and antioxidant activities of Fortunella margarita Swingle polysaccharides. International Journal of Biological Macromolecules, 2015, 74, 232-242.	3.6	28
63	Sonchus oleraceus Linn protects against LPS-induced sepsis and inhibits inflammatory responses in RAW264.7 cells. Journal of Ethnopharmacology, 2019, 236, 63-69.	2.0	28
64	Effects of freeze-thaw treatment and pullulanase debranching on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes. International Journal of Biological Macromolecules, 2021, 177, 447-454.	3.6	27
65	Purification and Characterization of Antioxidant Peptides of Pseudosciaena crocea Protein Hydrolysates. Molecules, 2017, 22, 57.	1.7	25
66	Purification and Characterisation of κ-Carrageenan Oligosaccharides Prepared by κ-Carrageenase from Thalassospira sp. Fjfst-332. Carbohydrate Polymers, 2018, 180, 314-327.	5.1	25
67	Physicochemical Properties and Digestion of Lotus Seed Starch under High-Pressure Homogenization. Nutrients, 2019, 11, 371.	1.7	25
68	<i>n</i> -Butanol Extract of Lotus Seeds Exerts Antiobesity Effects in 3T3-L1 Preadipocytes and High-Fat Diet-Fed Mice via Activating Adenosine Monophosphate-Activated Protein Kinase. Journal of Agricultural and Food Chemistry, 2019, 67, 1092-1103.	2.4	25
69	pH-responsive poly(gellan gum-co-acrylamide-co-acrylic acid) hydrogel: Synthesis, and its application for organic dye removal. International Journal of Biological Macromolecules, 2020, 153, 573-582.	3.6	25
70	Physicochemical properties and in vitro digestibility of lotus seed starch-lecithin complexes prepared by dynamic high pressure homogenization. International Journal of Biological Macromolecules, 2020, 156, 196-203.	3.6	25
71	Microwave vacuum drying of lotus seeds: Effect of a single-stage tempering treatment on drying characteristics, moisture distribution, and product quality. Drying Technology, 2017, 35, 1561-1570.	1.7	24
72	Cytotoxic, Antitumor and Immunomodulatory Effects of the Water-Soluble Polysaccharides from Lotus (Nelumbo nucifera Gaertn.) Seeds. Molecules, 2016, 21, 1465.	1.7	23

#	Article	IF	CITATIONS
73	Effect of Maternal Administration of Edible Bird's Nest on the Learning and Memory Abilities of Suckling Offspring in Mice. Neural Plasticity, 2018, 2018, 1-13.	1.0	23
74	Câ€ŧype starches and their derivatives: structure and function. Annals of the New York Academy of Sciences, 2017, 1398, 47-61.	1.8	22
75	Structural characteristics and prebiotic effects of Semen coicis resistant starches (type 3) prepared by different methods. International Journal of Biological Macromolecules, 2017, 105, 671-679.	3.6	22
76	An overview of Monascus fermentation processes for monacolin K production. Open Chemistry, 2020, 18, 10-21.	1.0	22
77	Effect of chlorogenic acid on the structural properties and digestibility of lotus seed starch during microwave gelatinization. International Journal of Biological Macromolecules, 2021, 191, 474-482.	3.6	22
78	Microwave-assisted extraction and anti-oxidation activity of polyphenols from lotus (Nelumbo) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 54
79	Structural characterization and in vitro fermentation by rat intestinal microbiota of a polysaccharide from Porphyra haitanensis. Food Research International, 2021, 147, 110546.	2.9	21
80	Hypolipidemic effect of polysaccharides from Fortunella margarita (Lour.) Swingle in hyperlipidemic rats. Food and Chemical Toxicology, 2019, 132, 110663.	1.8	20
81	Effects of freeze–thaw pretreatment on the structural properties and digestibility of lotus seed starch–glycerin monostearin complexes. Food Chemistry, 2021, 350, 129231.	4.2	20
82	Drying Characteristics and Processing Parameters for Microwave-Vacuum Drying of Kiwifruit (<i>A ctinidia deliciosa</i>) Slices. Journal of Food Processing and Preservation, 2015, 39, 2620-2629.	0.9	19
83	Effects of exogenous V-type complexes on the structural properties and digestibility of autoclaved lotus seed starch after retrogradation. International Journal of Biological Macromolecules, 2020, 165, 231-238.	3.6	18
84	Lateral flow test for visual detection of silver(I) based on cytosine-Ag(I)-cytosine interaction in C-rich oligonucleotides. Mikrochimica Acta, 2017, 184, 4243-4250.	2.5	17
85	Molecular mechanism of high-pressure processing for improving the quality of low-salt Eucheuma spinosum chicken breast batters. Poultry Science, 2019, 98, 2670-2678.	1.5	17
86	Effect of Hydrocolloids on the Retrogradation of Lotus Seed Starch Undergoing an Autoclaving–Cooling Treatment. Journal of Food Science, 2019, 84, 466-474.	1.5	17
87	Properties of lotus seed starch-glycerin monostearin V-complexes after long-term retrogradation. Food Chemistry, 2020, 311, 125887.	4.2	17
88	Pectin-microfibrillated cellulose microgel: Effects on survival of lactic acid bacteria in a simulated gastrointestinal tract. International Journal of Biological Macromolecules, 2020, 158, 826-836.	3.6	17
89	Selenium enrichment improves anti-proliferative effect of oolong tea extract on human hepatoma HuH-7Âcells. Food and Chemical Toxicology, 2021, 147, 111873.	1.8	17
90	Structural and physicochemical properties of lotus seed starch-chlorogenic acid complexes prepared by microwave irradiation. Journal of Food Science and Technology, 2021, 58, 4157-4166.	1.4	16

#	Article	IF	CITATIONS
91	Gellan gum/graphene oxide aerogels for methylene blue purification. Carbohydrate Polymers, 2021, 257, 117624.	5.1	16
92	Modified xanthan gum for methyl orange uptake: Kinetic, isotherm, and thermodynamic behaviors. International Journal of Biological Macromolecules, 2020, 165, 2442-2450.	3.6	15
93	Medium Optimization and Fermentation Kinetics for κ-Carrageenase Production by Thalassospira sp. Fjfst-332. Molecules, 2016, 21, 1479.	1.7	14
94	Preliminary characterization of a novel β-agarase from Thalassospira profundimonas. SpringerPlus, 2016, 5, 1086.	1.2	14
95	DHA-enriched phospholipids from large yellow croaker roe regulate lipid metabolic disorders and gut microbiota imbalance in SD rats with a high-fat diet. Food and Function, 2021, 12, 4825-4841.	2.1	14
96	Effect of Lotus Seed Resistant Starch on Lactic Acid Conversion to Butyric Acid Fermented by Rat Fecal Microbiota. Journal of Agricultural and Food Chemistry, 2022, 70, 1525-1535.	2.4	14
97	Effects of ultrasonic pretreatments on thermodynamic properties, water state, color kinetics, and free amino acid composition in microwave vacuum dried lotus seeds. Drying Technology, 2020, 38, 534-544.	1.7	13
98	The impact of various exogenous type starch on the structural properties and dispersion stability of autoclaved lotus seed starch. International Journal of Biological Macromolecules, 2021, 175, 49-57.	3.6	13
99	Synergistic effect of lotus seed resistant starch and short-chain fatty acids on mice fecal microbiota in vitro. International Journal of Biological Macromolecules, 2021, 183, 2272-2281.	3.6	13
100	Folium nelumbinis (Lotus leaf) volatile-rich fraction and its mechanisms of action against melanogenesis in B16 cells. Food Chemistry, 2020, 330, 127030.	4.2	13
101	Rhoifolin from Plumula Nelumbinis exhibits anti-cancer effects in pancreatic cancer via AKT/JNK signaling pathways. Scientific Reports, 2022, 12, 5654.	1.6	13
102	Modified xanthan gum for crystal violet uptake: kinetic, isotherm, and thermodynamic behaviors. Water Science and Technology, 2019, 79, 165-174.	1.2	12
103	Lotus seed skin proanthocyanidin extract exhibits potent antioxidant property via activation of the Nrf2–ARE pathway. Acta Biochimica Et Biophysica Sinica, 2019, 51, 31-40.	0.9	12
104	Enhanced Production of κ-Carrageenase and κ-Carrageenan Oligosaccharides through Immobilization of <i>Thalassospira sp.</i> Fjfst-332 with Magnetic Fe ₃ O ₄ -Chitosan Microspheres. Journal of Agricultural and Food Chemistry, 2017, 65, 7934-7943.	2.4	11
105	Structural characterization and in vitro analysis of the prebiotic activity of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds. Food Chemistry, 2022, 388, 133045.	4.2	11
106	Structural characterization of a novel mannogalactoglucan from Fortunella margarita and its simulated digestion in vitro. Food and Chemical Toxicology, 2019, 133, 110778.	1.8	10
107	Effects of water-soluble oligosaccharides extracted from lotus (Nelumbo nucifera Gaertn.) seeds on growth ability of Bifidobacterium adolescentis. European Food Research and Technology, 2015, 241, 459-467.	1.6	9
108	Effect of Alkaloids from Nelumbinis Plumula against Insulin Resistance of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. Journal of Diabetes Research, 2016, 2016, 1-7.	1.0	9

#	Article	IF	CITATIONS
109	Ultrasound-Assisted Rehydration of Dried Sea Cucumber (<i>Stichopus japonicus</i>) – Kinetics. International Journal of Food Engineering, 2016, 12, 753-761.	0.7	9
110	Separation of Oligosaccharides from Lotus Seeds via Medium-pressure Liquid Chromatography Coupled with ELSD and DAD. Scientific Reports, 2017, 7, 44174.	1.6	9
111	Expression of GPR43 in Brown Adipogenesis Is Enhanced by Rosiglitazone and Controlled by PPAR <i>γ</i> /RXR Heterodimerization. PPAR Research, 2018, 2018, 1-8.	1.1	9
112	Phenotypic, fermentation characterization, and resistance mechanism analysis of bacteriophage-resistant mutants of Lactobacillus delbrueckii ssp. bulgaricus isolated from traditional Chinese dairy products. Journal of Dairy Science, 2018, 101, 1901-1914.	1.4	8
113	Ratiometric Fluorescent Nanoprobe for Highly Sensitive Determination of Mercury Ions. Molecules, 2019, 24, 2278.	1.7	8
114	Inhibition Effect of Triglyceride Accumulation by Large Yellow Croaker Roe DHA-PC in HepG2 Cells. Marine Drugs, 2019, 17, 485.	2.2	8
115	Microwave Drying Characteristics and Kinetics of Lotus (<i>Nelumbo nucifera</i> Gaertn.) Seeds. International Journal of Food Engineering, 2013, 9, 91-98.	0.7	7
116	Effects of cross-pollination by â€~Murcott' tangor on the physicochemical properties, bioactive compounds and antioxidant capacities of â€~Qicheng 52' navel orange. Food Chemistry, 2019, 270, 476-480.	4.2	7
117	Antihypertensive effects of <i>Trichiurus lepturus</i> myosin hydrolysate in spontaneously hypertensive rats. Food and Function, 2020, 11, 3645-3656.	2.1	7
118	Evaluation of the chemical qualities and microstructural changes of <i>Lentinula edodes</i> caused by airborne ultrasonic treatment combined with microwave vacuum drying. Journal of Food Science, 2021, 86, 667-676.	1.5	7
119	A Rapid and Sensitive Fluorescent Microsphere-Based Lateral Flow Immunoassay for Determination of Aflatoxin B1 in Distillers' Grains. Foods, 2021, 10, 2109.	1.9	7
120	Lotus seed resistant starch ameliorates high-fat diet induced hyperlipidemia by fatty acid degradation and glycerolipid metabolism pathways in mouse liver. International Journal of Biological Macromolecules, 2022, 215, 79-91.	3.6	7
121	Drying Characteristics and Kinetics of <i>Anoectochilus roxburghii</i> by Microwave Vacuum Drying. Journal of Food Processing and Preservation, 2014, 38, 2223-2231.	0.9	6
122	Functional group changes and chemical bondâ€dependent dielectric properties of lotus seed flour with microwave vacuum drying. Journal of Food Science, 2020, 85, 4241-4248.	1.5	6
123	Preparation of "Ion-Imprinting―Difunctional Magnetic Fluorescent Nanohybrid and Its Application to Detect Cadmium Ions. Sensors, 2020, 20, 995.	2.1	6
124	MCT/LCT Mixed Oil Phase Enhances the Rheological Property and Freeze-Thawing Stability of Emulsion. Foods, 2022, 11, 712.	1.9	6
125	Structural characteristics, physicochemical properties and prebiotic potential of modified dietary fibre from the basal part of bamboo shoot. International Journal of Food Science and Technology, 2021, 56, 618-628.	1.3	5
126	Process effectiveness assessment by modeling the kinetics of lotus seed drying combining airâ€borne ultrasound and microwave vacuum. Journal of Food Process Engineering, 2021, 44, e13795.	1.5	5

#	Article	IF	CITATIONS
127	Insights into the formation and digestive properties of lotus seed starch–glycerin monostearate complexes formed by freeze–thaw pretreatment and microfluidization. International Journal of Biological Macromolecules, 2022, 204, 215-223.	3.6	5
128	Introduction to the 1st International Symposium on Phytochemicals in Medicine and Food (ISPMF 2015). Journal of Agricultural and Food Chemistry, 2016, 64, 2439-2441.	2.4	4
129	Proteomic analysis of body wall and coelomic fluid in Sipunculus nudus. Fish and Shellfish Immunology, 2021, 111, 16-24.	1.6	4
130	Formation of Shelf-Stable Pickering High Internal Phase Emulsion Stabilized by Sipunculus nudus Water-Soluble Proteins (WSPs). Frontiers in Nutrition, 2021, 8, 770218.	1.6	4
131	Investigation of the Structural, Thermal, and Physicochemical Properties of Nanocelluloses Extracted From Bamboo Shoot Processing Byproducts. Frontiers in Chemistry, 0, 10, .	1.8	4
132	Effects of Microwave Vacuum Drying on Macroscopic Properties and Microstructure of Lotus (<i>Nelumbo nucifera</i> Gaertn.) Seeds. International Journal of Food Engineering, 2018, 14, .	0.7	3
133	The Effect of Vacuum Deep Frying Technology and Raphanus sativus on the Quality of Surimi Cubes. Foods, 2021, 10, 2544.	1.9	3
134	Edible bird's nest inhibits the inflammation and regulates the immunological balance of lung injury mice by SO ₂ . Food Frontiers, 0, , .	3.7	2
135	<i>Food Frontiers</i> : An academically sponsored new journal. Food Frontiers, 2020, 1, 3-5.	3.7	1
136	Impacts of Whey Protein on Digestion of Lotus Seed Starch Subjected to a Dynamic In Vitro Gastric Digestion. Food Biophysics, 2021, 16, 451-459.	1.4	1
137	Difference in the adhesion of Bifidobacterium breve to lotus seed resistant starch is attributable to its structural performance conferred by the preparation method. International Journal of Biological Macromolecules, 2022, 195, 309-316.	3.6	1