List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1811252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual pH-Responsive Macrophage-Targeted Isoniazid Glycoparticles for Intracellular Tuberculosis Therapy. Biomacromolecules, 2021, 22, 3756-3768.	2.6	12
2	Branched and Dendritic Polymer Architectures: Functional Nanomaterials for Therapeutic Delivery. Advanced Functional Materials, 2020, 30, 1901001.	7.8	109
3	Hyperbranched poly(ethylenimine- <i>co</i> -oxazoline) by thiol–yne chemistry for non-viral gene delivery: investigating the role of polymer architecture. Polymer Chemistry, 2019, 10, 1202-1212.	1.9	42
4	Exploitation of Compartmentalization in RAFT Miniemulsion Polymerization to Increase the Degree of Livingness. Journal of Polymer Science Part A, 2019, 57, 1938-1946.	2.5	31
5	A study on the preparation of alkyne functional nanoparticles <i>via</i> RAFT emulsion polymerisation. Polymer Chemistry, 2019, 10, 1452-1459.	1.9	12
6	Synthesis of Subâ€100 nm Glycosylated Nanoparticles via a One Step, Free Radical, and Surfactant Free Emulsion Polymerization. Macromolecular Rapid Communications, 2018, 39, e1800122.	2.0	4
7	Branched poly (trimethylphosphonium ethylacrylateâ€ <i>co</i> â€PEGA) by RAFT: alternative to cationic polyammoniums for nucleic acid complexation. Journal of Interdisciplinary Nanomedicine, 2018, 3, 164-174.	3.6	8
8	Cationic and hydrolysable branched polymers by RAFT for complexation and controlled release of dsRNA. Polymer Chemistry, 2018, 9, 4025-4035.	1.9	29
9	Well-defined hyperstar copolymers based on a thiol–yne hyperbranched core and a poly(2-oxazoline) shell for biomedical applications. Polymer Chemistry, 2017, 8, 2041-2054.	1.9	32
10	Development of a Gemcitabine-Polymer Conjugate with Prolonged Cytotoxicity against a Pancreatic Cancer Cell Line. ACS Macro Letters, 2017, 6, 535-540.	2.3	24
11	<i>>50th Anniversary Perspective</i> : RAFT Polymerization—A User Guide. Macromolecules, 2017, 50, 7433-7447.	2.2	1,007
12	SuFEx – a selectively triggered chemistry for fast, efficient and equimolar polymer–polymer coupling reactions. Polymer Chemistry, 2017, 8, 7475-7485.	1.9	27
13	Anionic multiblock core cross-linked star copolymers via RAFT polymerization. Polymer Chemistry, 2017, 8, 5513-5524.	1.9	35
14	Peptide–Polymer Conjugates: Synthetic Design Strategies. , 2017, , 1289-1303.		0
15	Synthesis of mannosylated and PECylated nanoparticles via RAFT emulsion polymerisation, and investigation of particle-lectin aggregation using turbidimetric and DLS techniques. Polymer, 2016, 106, 229-237.	1.8	25
16	Study of (Cyclic Peptide)–Polymer Conjugate Assemblies by Smallâ€Angle Neutron Scattering. Chemistry - A European Journal, 2016, 22, 18419-18428.	1.7	16
17	Hyperbranched Polymers with High Degrees of Branching and Low Dispersity Values: Pushing the Limits of Thiol–Yne Chemistry. Macromolecules, 2016, 49, 1296-1304.	2.2	69
18	Reversible Addition-Fragmentation Chain Transfer Polymerization from Surfaces. Advances in Polymer Science, 2015, , 77-106.	0.4	8

#	Article	IF	CITATIONS
19	Design, synthesis and thermal behaviour of a series of well-defined clickable and triggerable sulfonate polymers. RSC Advances, 2015, 5, 66554-66562.	1.7	23
20	Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chemical Reviews, 2015, 115, 9745-9800.	23.0	393
21	Ultrafast RAFT polymerization: multiblock copolymers within minutes. Polymer Chemistry, 2015, 6, 1502-1511.	1.9	130
22	Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nature Materials, 2015, 14, 143-159.	13.3	512
23	Fluorescent bowl-shaped nanoparticles from â€~clicked' porphyrin–polymer conjugates. Polymer Chemistry, 2014, 5, 4016-4021.	1.9	30
24	Synthesis of Polystyrene-Based Hyperbranched Polymers by Thiol–Yne Chemistry: A Detailed Investigation. Macromolecules, 2014, 47, 6697-6705.	2.2	39
25	Hierarchical Assembly of Branched Supramolecular Polymers from (Cyclic Peptide)–Polymer Conjugates. Biomacromolecules, 2014, 15, 4002-4011.	2.6	8
26	Photonic porous silicon as a pH sensor. Nanoscale Research Letters, 2014, 9, 420.	3.1	23
27	Sequenceâ€Controlled Multiblock Copolymers via RAFT Polymerization: Modeling and Simulations. Macromolecular Theory and Simulations, 2014, 23, 331-339.	0.6	70
28	Tunable Selfâ€Assembly of Triazoleâ€Linked Porphyrin–Polymer Conjugates. Chemistry - A European Journal, 2013, 19, 12759-12770.	1.7	38
29	Synthesis of silica–polymer core–shell nanoparticles by reversible addition–fragmentation chain transfer polymerization. Chemical Communications, 2013, 49, 9077.	2.2	81
30	Spatially Controlled Photochemical Peptide and Polymer Conjugation on Biosurfaces. Biomacromolecules, 2013, 14, 4340-4350.	2.6	46
31	Janus cyclic peptide–polymer nanotubes. Nature Communications, 2013, 4, 2780.	5.8	89
32	Unexpected behavior of polydimethylsiloxane/poly(2-(dimethylamino)ethyl acrylate) (charged) amphiphilic block copolymers in aqueous solution. Polymer Chemistry, 2013, 4, 2140.	1.9	54
33	A Facile Route to Functional Hyperbranched Polymers by Combining Reversible Addition–Fragmentation Chain Transfer Polymerization, Thiol–Yne Chemistry, and Postpolymerization Modification Strategies. ACS Macro Letters, 2013, 2, 366-370.	2.3	43
34	Thermoresponsive behavior of amphiphilic diblock co-oligomers of ethylene glycol and styrene in aqueous solution. Soft Matter, 2013, 9, 7007.	1.2	12
35	Multiâ€shell Soft Nanotubes from Cyclic Peptide Templates. Advanced Materials, 2013, 25, 1170-1172.	11.1	42
36	Waterâ€Soluble and pHâ€Responsive Polymeric Nanotubes from Cyclic Peptide Templates. Chemistry - A European Journal. 2013. 19. 1955-1961.	1.7	48

#	Article	IF	CITATIONS
37	The synthesis of well-defined poly(vinylbenzyl chloride)-grafted nanoparticles via RAFT polymerization. Beilstein Journal of Organic Chemistry, 2013, 9, 1226-1234.	1.3	28
38	Synthesis and Immunological Evaluation of Selfâ€Assembling and Selfâ€Adjuvanting Tricomponent Glycopeptide Cancerâ€Vaccine Candidates. Chemistry - A European Journal, 2012, 18, 16540-16548.	1.7	63
39	Assessment of the influence of microwave irradiation on conventional and RAFT radical polymerization of styrene. Polymer Chemistry, 2012, 3, 2801.	1.9	15
40	Pushing the limits of copper mediated azide–alkyne cycloaddition (CuAAC) to conjugate polymeric chains to cyclic peptides. Polymer Chemistry, 2012, 3, 1820.	1.9	36
41	Supramolecular hybrids of cellulose and synthetic polymers. Polymer Chemistry, 2012, 3, 3266.	1.9	14
42	One-pot ATRP synthesis of a triple hydrophilic block copolymer with dual LCSTs and its thermo-induced association behavior. Soft Matter, 2012, 8, 9526.	1.2	29
43	Altering Peptide Fibrillization by Polymer Conjugation. Biomacromolecules, 2012, 13, 2739-2747.	2.6	29
44	Short chain amphiphilic diblock coâ€oligomers via RAFT polymerization. Journal of Polymer Science Part A, 2012, 50, 187-198.	2.5	23
45	RAFT Polymerization: A Powerful Tool for the Synthesis and Study of Oligomers. ACS Symposium Series, 2012, , 13-25.	0.5	3
46	One-Pot RAFT/"Click―Chemistry via Isocyanates: Efficient Synthesis of α-End-Functionalized Polymers. Journal of the American Chemical Society, 2012, 134, 12596-12603.	6.6	97
47	Self-assembling macromolecular chimeras: controlling fibrillization of a Î ² -sheet forming peptide by polymer conjugation. Soft Matter, 2011, 7, 3754.	1.2	23
48	Surface-Initiated Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization from Fine Particles Functionalized with Trithiocarbonates. Macromolecules, 2011, 44, 8944-8953.	2.2	140
49	Synthetic Strategies for the Design of Peptide/Polymer Conjugates. Polymer Reviews, 2011, 51, 214-234.	5.3	77
50	Modular design for the controlled production of polymeric nanotubes from polymer/peptide conjugates. Polymer Chemistry, 2011, 2, 1956.	1.9	81
51	Design of complex polymeric architectures and nanostructured materials/hybrids by living radical polymerization of hydroxylated monomers. Polymer Chemistry, 2011, 2, 270-288.	1.9	61
52	Origin of Initial Uncontrolled Polymerization and Its Suppression in the Copper(0)-Mediated Living Radical Polymerization of Methyl Acrylate in a Nonpolar Solvent. Macromolecules, 2011, 44, 8034-8041.	2.2	30
53	Hyperbranched alternating block copolymers using thiol–yne chemistry: materials with tuneable properties. Chemical Communications, 2011, 47, 239-241.	2.2	100
54	'Pseudo-star' Copolymers Formed by a Combination of RAFT Polymerization and Isocyanate-Coupling. Australian Journal of Chemistry, 2011, 64, 1047.	0.5	9

#	Article	IF	CITATIONS
55	Investigation of polymer blends of polyamide-6 and poly(methyl methacrylate) synthesized by RAFT polymerization. Polymer Bulletin, 2011, 66, 1089-1098.	1.7	7
56	Construction of temperature responsive hybrid crosslinked selfâ€assemblies based on PEGâ€ <i>b</i> â€P(MMAâ€ <i>co</i> â€MPMA)â€ <i>b</i> â€PNIPAAm triblock copolymer: ATRP synthesis and thermoinduced association behavior. Journal of Polymer Science Part A, 2011, 49, 1809-1820.	2.5	13
57	"Clickable―polymers via a combination of RAFT polymerization and isocyanate chemistry. Journal of Polymer Science Part A, 2011, 49, 2771-2782.	2.5	27
58	Modeling highly branched structures: Description of the solution structures of dendrimers, polyglycerol, and glycogen. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1525-1538.	2.4	7
59	Copper(0)â€Mediated Living Radical Polymerization of Methyl Methacrylate in a Nonâ€polar Solvent. Macromolecular Rapid Communications, 2010, 31, 1276-1280.	2.0	53
60	Describing the Structure of a Randomly Hyperbranched Polymer. Macromolecular Theory and Simulations, 2010, 19, 219-227.	0.6	17
61	Poly(ethylene glycol) as a 'green solvent' for the RAFT polymerization of methyl methacrylate. Polymer, 2010, 51, 3836-3842.	1.8	30
62	Synthesis of a cellulose supported chain transfer agent and its application to RAFT polymerization. Journal of Polymer Science Part A, 2010, 48, 4361-4365.	2.5	42
63	'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization. Nature Chemistry, 2010, 2, 811-820.	6.6	264
64	The structure of randomly branched polymers synthesized by living radical methods. Polymer Chemistry, 2010, 1, 1067.	1.9	33
65	Synthesis of silica-polymer hybrids by combination of RAFT polymerization and azide-alkyne cycloaddition â€ [~] click' reactions. Polymer Chemistry, 2010, 1, 1615.	1.9	55
66	Synthesis of Self-assembling Cyclic Peptide-polymer Conjugates using Click Chemistry. Australian Journal of Chemistry, 2010, 63, 1169.	0.5	51
67	Highly Branched and Hyperbranched Glycopolymers via Reversible Additionâ [~] 'Fragmentation Chain Transfer Polymerization and Click Chemistry. Macromolecules, 2010, 43, 1438-1443.	2.2	137
68	Polymer–peptide chimeras for the multivalent display of immunogenic peptides. Chemical Communications, 2010, 46, 2188.	2.2	34
69	RAFT polymerization kinetics: How long are the crossâ€ŧerminating oligomers?. Journal of Polymer Science Part A, 2009, 47, 3455-3466.	2.5	82
70	Facile synthesis of starâ€shaped copolymers via combination of RAFT and ring opening polymerization. Journal of Polymer Science Part A, 2009, 47, 6396-6408.	2.5	38
71	Control of block copolymer morphology: An example of selective morphology induced by selfâ€assembly formation condition. Journal of Polymer Science Part A, 2009, 47, 6783-6788.	2.5	4
72	pH- and thermo-multi-responsive fluorescent micelles from block copolymers via reversible addition fragmentation chain transfer (RAFT) polymerization. Polymer, 2009, 50, 4151-4158.	1.8	46

#	Article	IF	CITATIONS
73	Cellulose modification by polymer grafting: a review. Chemical Society Reviews, 2009, 38, 2046.	18.7	884
74	Obtaining Kinetic Information from the Chain-Length Distribution of Polymers Produced by RAFT. Journal of Physical Chemistry B, 2009, 113, 7086-7094.	1.2	48
75	Bioapplications of RAFT Polymerization. Chemical Reviews, 2009, 109, 5402-5436.	23.0	913
76	Searching for Stars: Selective Desulfurization and Fluorescence Spectroscopy as New Tools in the Search for Cross Termination Side-products in RAFT Polymerization. Australian Journal of Chemistry, 2009, 62, 1533.	0.5	19
77	Orthogonal "Relay―Reactions for Designing Functionalized Soft Nanoparticles. Journal of the American Chemical Society, 2009, 131, 1889-1895.	6.6	77
78	Hyperbranched Polymers by Thiolâ^'Yne Chemistry: From Small Molecules to Functional Polymers. Journal of the American Chemical Society, 2009, 131, 18075-18077.	6.6	280
79	The future of reversible addition fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2008, 46, 5715-5723.	2.5	265
80	Antibacterial Cellulose Fiber via RAFT Surface Graft Polymerization. Biomacromolecules, 2008, 9, 91-99.	2.6	311
81	Successful Dispersion Polymerization in Supercritical CO ₂ Using Polyvinylalkylate Hydrocarbon Surfactants Synthesized and Anchored via RAFT. Journal of the American Chemical Society, 2008, 130, 12242-12243.	6.6	96
82	Synthesis of natural–synthetic hybrid materials from cellulose via the RAFT process. Soft Matter, 2008, 4, 145-155.	1.2	86
83	RAFT Polymerization Kinetics: Combination of Apparently Conflicting Models. Macromolecules, 2008, 41, 6400-6412.	2.2	116
84	"Click―Chemistry and Radical Polymerization: Potential Loss of Orthogonality. Macromolecules, 2008, 41, 6728-6732.	2.2	94
85	Solid-Supported MADIX Polymerization of Vinyl Acetate. Macromolecules, 2008, 41, 7071-7078.	2.2	36
86	Synthesis of Poly(methyl acrylate) Grafted onto Silica Particles by Z-supported RAFT Polymerization. Macromolecular Symposia, 2007, 248, 94-103.	0.4	29
87	Synthesis of well-defined conjugated copolymers by RAFT polymerization using cysteine and glutathione-based chain transfer agents. Chemical Communications, 2007, , 4294.	2.2	41
88	Ultra-fast microwave enhanced reversible addition-fragmentation chain transfer (RAFT) polymerization: monomers to polymers in minutes. Chemical Communications, 2007, , 2145.	2.2	63
89	Reversible Additionâ ^{~,} Fragmentation Chain Transfer Graft Polymerization Mediated by Fumed Silica Supported Chain Transfer Agents. Macromolecules, 2007, 40, 9116-9124.	2.2	118
90	Investigation of the Experimental Factors Affecting the Trithiocarbonate-Mediated RAFT Polymerization of Methyl Acrylate. Australian Journal of Chemistry, 2007, 60, 772.	0.5	25

#	Article	IF	CITATIONS
91	Living Radical Polymerization of Isoprene via the RAFT Process. Macromolecules, 2007, 40, 1408-1412.	2.2	105
92	Microwave-Accelerated RAFT Polymerization of Polar Monomers. Macromolecular Rapid Communications, 2007, 28, 478-483.	2.0	58
93	Surface structure of thin asymmetric PS-b-PMMA diblock copolymers investigated by atomic force microscopy. European Polymer Journal, 2007, 43, 789-796.	2.6	9
94	Original approach to multiblock copolymers via reversible addition–fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2007, 45, 2334-2340.	2.5	79
95	RAFT Graft Polymerization of 2-(Dimethylaminoethyl) Methacrylate onto Cellulose Fibre. Australian Journal of Chemistry, 2006, 59, 737.	0.5	28
96	Synthesis of Well-Defined Homopolymer and Diblock Copolymer Grafted onto Silica Particles by Z-Supported RAFT Polymerization. Macromolecules, 2006, 39, 8603-8608.	2.2	139
97	Synthesis of Monocyclic and Linear Polystyrene Using the Reversible Coupling/Cleavage of Thiol/Disulfide Groups. Macromolecules, 2006, 39, 9028-9034.	2.2	152
98	Thermal stability of reversible addition-fragmentation chain transfer/macromolecular architecture design by interchange of xanthates chain-transfer agents. Journal of Polymer Science Part A, 2006, 44, 6980-6987.	2.5	63
99	Selective One-Pot Synthesis of Trithiocarbonates, Xanthates, and Dithiocarbamates for Use in RAFT/MADIX Living Radical Polymerizations. Organic Letters, 2006, 8, 553-556.	2.4	106
100	Thermo-responsive Poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) Block Copolymers Synthesized by RAFT Polymerization: Micellization and Gelation. Macromolecular Chemistry and Physics, 2006, 207, 1718-1726.	1.1	85
101	Influence of reaction parameters on the synthesis of hyperbranched polymers via reversible addition fragmentation chain transfer (RAFT) polymerization. Polymer, 2005, 46, 6293-6299.	1.8	83
102	Thermoresponsive micelles from well-defined block copolymers synthesized via reversible addition-fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2005, 43, 3643-3654.	2.5	81
103	Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. Journal of Polymer Science Part A, 2005, 43, 5347-5393.	2.5	1,095
104	Reversible Additionâ^'Fragmentation Chain Transfer Polymerization Mediated by a Solid Supported Chain Transfer Agent. Macromolecules, 2005, 38, 6770-6774.	2.2	105
105	Novel Amide-Based Chain Transfer Agent for Reversible Addition Fragmentation Chain Transfer Polymerization. Macromolecules, 2005, 38, 1057-1060.	2.2	34
106	One-Pot Hyperbranched Polymer Synthesis Mediated by Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules, 2005, 38, 2131-2136.	2.2	273
107	Merrifield Resin-Supported Chain Transfer Agents, Precursors for RAFT Polymerization. Organic Letters, 2005, 7, 3449-3452.	2.4	41
108	Graft Polymerization:  Grafting Poly(styrene) from Cellulose via Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules, 2005, 38, 10363-10372.	2.2	255

#	Article	IF	CITATIONS
109	Reversible Additionâ^'Fragmentation Chain Transfer Polymerization:  End Group Modification for Functionalized Polymers and Chain Transfer Agent Recovery. Macromolecules, 2005, 38, 2033-2036.	2.2	466
110	Polymer Architecturesvia Reversible Addition Fragmentation Chain Transfer(RAFT) Polymerization. Macromolecular Symposia, 2004, 216, 23-36.	0.4	48
111	Versatile Chain Transfer Agents for Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization to Synthesize Functional Polymeric Architectures. Macromolecules, 2004, 37, 2709-2717.	2.2	196
112	Poly(ethylene glycol) as solvent for transition metal mediated living radical polymerisationElectronic supplementary information (ESI) available: experimental data. See http://www.rsc.org/suppdata/cc/b3/b313061d/. Chemical Communications, 2004, , 604.	2.2	39
113	Reversible addition–fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexfluorophosphate. European Polymer Journal, 2003, 39, 417-422.	2.6	68
114	Preparation of Fluorinated Copolymers by Copper-Mediated Living Radical Polymerization. Macromolecules, 2003, 36, 9042-9049.	2.2	52
115	In Situ NMR Monitoring of Living Radical Polymerization. , 2003, , 125-146.		5
116	Origin of Inhibition Effects in the Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization of Methyl Acrylate. Macromolecules, 2002, 35, 8300-8306.	2.2	332
117	First report of reversible addition–fragmentation chain transfer (RAFT) polymerisation in room temperature ionic liquids. Chemical Communications, 2002, , 2226-2227.	2.2	126
118	Preparation of fluorinated methacrylic copolymers by copper mediated living radical polymerization. Tetrahedron, 2002, 58, 4053-4059.	1.0	49
119	Copper(I)-mediated radical polymerization of methacrylates in aqueous solution. Journal of Polymer Science Part A, 2001, 39, 1696-1707.	2.5	91
120	Novel polymers from atom transfer polymerisation mediated by copper(I) Schiff base complexes. Macromolecular Symposia, 2000, 157, 201-208.	0.4	14
121	Copper(I)-Mediated Living Radical Polymerization in the Presence of Oxyethylene Groups:Â Online1H NMR Spectroscopy To Investigate Solvent Effects. Macromolecules, 2000, 33, 8246-8251.	2.2	109
122	Peptide–Polymer Conjugates: Synthetic Design Strategies. , 0, , 5892-5906.		0