
Karen L Elkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1811113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deficiency in CCR2 increases susceptibility of mice to infection with an intracellular pathogen, Francisella tularensis LVS, but does not impair development of protective immunity. PLoS ONE, 2021, 16, e0249142.	1.1	1
2	Modern Development and Production of a New Live Attenuated Bacterial Vaccine, SCHU S4 ΔclpB, to Prevent Tularemia. Pathogens, 2021, 10, 795.	1.2	6
3	Whole genome profiling refines a panel of correlates to predict vaccine efficacy against Mycobacterium tuberculosis. Tuberculosis, 2020, 120, 101895.	0.8	5
4	rM-CSF efficiently replaces L929 in generating mouse and rat bone marrow-derived macrophages for in vitro functional studies of immunity to intracellular bacteria. Journal of Immunological Methods, 2020, 477, 112693.	0.6	10
5	Immune lymphocytes halt replication of Francisella tularensis LVS within the cytoplasm of infected macrophages. Scientific Reports, 2020, 10, 12023.	1.6	5
6	Production of IFN-Î ³ by splenic dendritic cells during innate immune responses against Francisella tularensis LVS depends on MyD88, but not TLR2, TLR4, or TLR9. PLoS ONE, 2020, 15, e0237034.	1.1	4
7	The Diversity Outbred Mouse Population Is an Improved Animal Model of Vaccination against Tuberculosis That Reflects Heterogeneity of Protection. MSphere, 2020, 5, .	1.3	42
8	Title is missing!. , 2020, 15, e0237034.		0
9	Title is missing!. , 2020, 15, e0237034.		0
10	Title is missing!. , 2020, 15, e0237034.		0
11	Title is missing!. , 2020, 15, e0237034.		0
12	A panel of correlates predicts vaccine-induced protection of rats against respiratory challenge with virulent Francisella tularensis. PLoS ONE, 2018, 13, e0198140.	1.1	20
13	Sequence comparison of Francisella tularensis LVS, LVS-G and LVS-R. Pathogens and Disease, 2018, 76, .	0.8	2
14	Murine survival of infection with Francisella novicida and protection against secondary challenge is critically dependent on B lymphocytes. Microbes and Infection, 2017, 19, 91-100.	1.0	3
15	Progress, challenges, and opportunities in <i>Francisella</i> vaccine development. Expert Review of Vaccines, 2016, 15, 1183-1196.	2.0	16
16	Activities of Murine Peripheral Blood Lymphocytes Provide Immune Correlates That Predict Francisella tularensis Vaccine Efficacy. Infection and Immunity, 2016, 84, 1054-1061.	1.0	16
17	GM-CSF has disparate roles during intranasal and intradermal Francisella tularensis infection. Microbes and Infection, 2016, 18, 758-767.	1.0	3
18	Francisella tularensis Vaccines Elicit Concurrent Protective T- and B-Cell Immune Responses in BALB/cByJ Mice. PLoS ONE, 2015, 10, e0126570.	1.1	12

Karen L Elkins

#	Article	IF	CITATIONS
19	Correlates of Vaccine-Induced Protection against Mycobacterium tuberculosis Revealed in Comparative Analyses of Lymphocyte Populations. Vaccine Journal, 2015, 22, 1096-1108.	3.2	14
20	IL-23 p19 Knockout Mice Exhibit Minimal Defects in Responses to Primary and Secondary Infection with Francisella tularensis LVS. PLoS ONE, 2014, 9, e109898.	1.1	4
21	T-bet Regulates Immunity to Francisella tularensis Live Vaccine Strain Infection, Particularly in Lungs. Infection and Immunity, 2014, 82, 1477-1490.	1.0	22
22	Models Derived from <i>In Vitro</i> Analyses of Spleen, Liver, and Lung Leukocyte Functions Predict Vaccine Efficacy against the Francisella tularensis Live Vaccine Strain (LVS). MBio, 2014, 5, e00936.	1.8	27
23	IL-12Rβ2 is critical for survival of primary <i>Francisella tularensis</i> LVS infection. Journal of Leukocyte Biology, 2013, 93, 657-667.	1.5	19
24	Generation of protection against Francisella novicida in mice depends on the pathogenicity protein PdpA, but not PdpC or PdpD. Microbes and Infection, 2013, 15, 816-827.	1.0	8
25	Interleukin-6 Is Essential for Primary Resistance to Francisella tularensis Live Vaccine Strain Infection. Infection and Immunity, 2013, 81, 585-597.	1.0	38
26	Development of Functional and Molecular Correlates of Vaccine-Induced Protection for a Model Intracellular Pathogen, F. tularensis LVS. PLoS Pathogens, 2012, 8, e1002494.	2.1	50
27	Immunity to Francisella. Frontiers in Microbiology, 2011, 2, 26.	1.5	100
28	Infection of Mice with <i>Francisella</i> as an Immunological Model. Current Protocols in Immunology, 2011, 93, Unit 19.14.	3.6	35
29	Measurement of Macrophageâ€Mediated Killing of Intracellular Bacteria, Including <i>Francisella</i> and <i>Mycobacteria</i> . Current Protocols in Immunology, 2011, 93, Unit14.25.	3.6	26
30	Survival of secondary lethal systemic Francisella LVS challenge depends largely on interferon gamma. Microbes and Infection, 2010, 12, 28-36.	1.0	22
31	Lung CD4â^'CD8â^' Double-Negative T Cells Are Prominent Producers of IL-17A and IFN-γ during Primary Respiratory Murine Infection with <i>Francisella</i> â€^ <i>tularensis</i> Live Vaccine Strain. Journal of Immunology, 2010, 184, 5791-5801.	0.4	96
32	Objections to the transfer of Francisella novicida to the subspecies rank of Francisella tularensis. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1717-1718.	0.8	62
33	Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida. Microbiology (United Kingdom), 2009, 155, 1489-1497.	0.7	32
34	Antigen-specific B-1a antibodies induced by <i>Francisella tularensis</i> LPS provide long-term protection against <i>F. tularensis</i> LVS challenge. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4343-4348.	3.3	111
35	T Cells from Lungs and Livers of Francisella tularensis- Immune Mice Control the Growth of Intracellular Bacteria. Infection and Immunity, 2009, 77, 2010-2021.	1.0	28
36	NK cells activated in vivo by bacterial DNA control the intracellular growth of Francisella tularensis LVS. Microbes and Infection, 2009, 11, 49-56.	1.0	20

KAREN L ELKINS

#	Article	IF	CITATIONS
37	The Membrane Form of Tumor Necrosis Factor Is Sufficient to Mediate Partial Innate Immunity to <i>Francisella tularensis</i> Live Vaccine Strain. Journal of Infectious Diseases, 2008, 198, 284-292.	1.9	22
38	The <i>Francisella</i> Pathogenicity Island Protein PdpD Is Required for Full Virulence and Associates with Homologues of the Type VI Secretion System. Journal of Bacteriology, 2008, 190, 4584-4595.	1.0	104
39	Diverse Myeloid and Lymphoid Cell Subpopulations Produce Gamma Interferon during Early Innate Immune Responses to <i>Francisella tularensis</i> Live Vaccine Strain. Infection and Immunity, 2008, 76, 4311-4321.	1.0	36
40	Differential Requirements by CD4+ and CD8+ T Cells for Soluble and Membrane TNF in Control of <i>Francisella tularensis</i> Live Vaccine Strain Intramacrophage Growth. Journal of Immunology, 2007, 179, 7709-7719.	0.4	29
41	Toll-Like Receptor 2-Mediated Signaling Requirements for Francisella tularensis Live Vaccine Strain Infection of Murine Macrophages. Infection and Immunity, 2007, 75, 4127-4137.	1.0	104
42	Innate and Adaptive Immunity to <i>Francisella</i> . Annals of the New York Academy of Sciences, 2007, 1105, 284-324.	1.8	145
43	Myeloid differentiation factor-88 (MyD88) is essential for control of primary in vivo Francisella tularensis LVS infection, but not for control of intramacrophage bacterial replication. Microbes and Infection, 2006, 8, 779-790.	1.0	60
44	Immunologic Consequences of <i>Francisella tularensis</i> Live Vaccine Strain Infection: Role of the Innate Immune Response in Infection and Immunity. Journal of Immunology, 2006, 176, 6888-6899.	0.4	102
45	CD4â^'CD8â^' T cells control intracellular bacterial infections both in vitro and in vivo. Journal of Experimental Medicine, 2005, 202, 309-319.	4.2	118
46	A Francisella tularensis Pathogenicity Island Required for Intramacrophage Growth. Journal of Bacteriology, 2004, 186, 6430-6436.	1.0	330
47	Innate and adaptive immune responses to an intracellular bacterium, Francisella tularensis live vaccine strain. Microbes and Infection, 2003, 5, 135-142.	1.0	161
48	Francisella novicida LPS has greater immunobiological activity in mice than F. tularensis LPS, and contributes to F. novicida murine pathogenesis. Microbes and Infection, 2003, 5, 397-403.	1.0	99
49	CD4+ T Cells Mediate IFN-Î ³ -Independent Control of <i>Mycobacterium tuberculosis</i> Infection Both In Vitro and In Vivo. Journal of Immunology, 2003, 171, 4689-4699.	0.4	149
50	Multiple T Cell Subsets Control Francisella tularensis LVS Intracellular Growth Without Stimulation Through Macrophage Interferon γ Receptors. Journal of Experimental Medicine, 2003, 198, 379-389.	4.2	97
51	In Vivo Clearance of an Intracellular Bacterium, Francisella tularensis LVS, Is Dependent on the p40 Subunit of Interleukin-12 (IL-12) but Not on IL-12 p70. Infection and Immunity, 2002, 70, 1936-1948.	1.0	124
52	The CXC Chemokine Murine Monokine Induced by IFN-γ (CXC Chemokine Ligand 9) Is Made by APCs, Targets Lymphocytes Including Activated B Cells, and Supports Antibody Responses to a Bacterial Pathogen In Vivo. Journal of Immunology, 2002, 169, 1433-1443.	0.4	120
53	Susceptibility to Secondary Francisella tularensis Live Vaccine Strain Infection in B-Cell-Deficient Mice Is Associated with Neutrophilia but Not with Defects in Specific T-Cell-Mediated Immunity. Infection and Immunity, 2001, 69, 194-203.	1.0	104
54	Infection of B Cell-Deficient Mice with CDC 1551, a Clinical Isolate of <i>Mycobacterium tuberculosis</i> : Delay in Dissemination and Development of Lung Pathology. Journal of Immunology, 2000, 164, 6417-6425.	0.4	135

#	Article	IF	CITATIONS
55	Purified Lipopolysaccharide from Francisella tularensis Live Vaccine Strain (LVS) Induces Protective Immunity against LVS Infection That Requires B Cells and Gamma Interferon. Infection and Immunity, 2000, 68, 1988-1996.	1.0	92
56	Importance of B cells, but Not Specific Antibodies, in Primary and Secondary Protective Immunity to the Intracellular Bacterium <i>Francisella tularensis</i> Live Vaccine Strain. Infection and Immunity, 1999, 67, 6002-6007.	1.0	101
57	Introduction of Francisella tularensis at skin sites induces resistance to infection and generation of protective immunity. Microbial Pathogenesis, 1992, 13, 417-421.	1.3	45