Maria Lm Asplund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1811049/publications.pdf

Version: 2024-02-01

430754 477173 1,464 31 18 29 citations g-index h-index papers 33 33 33 1906 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electroactive polymers for neural interfaces. Polymer Chemistry, 2010, 1, 1374.	1.9	174
2	Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge. ACS Applied Materials & Samp; Interfaces, 2017, 9, 189-197.	4.0	143
3	Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nature Protocols, 2020, 15, 3557-3578.	5.5	142
4	Nanostructured platinum grass enables superior impedance reduction for neural microelectrodes. Biomaterials, 2015, 67, 346-353.	5.7	130
5	Incidence of Traumatic Peripheral Nerve Injuries and Amputations in Sweden between 1998 and 2006. Neuroepidemiology, 2009, 32, 217-228.	1.1	122
6	Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases, 2008, 3, 83-93.	0.6	100
7	Applications of PEDOT in bioelectronic medicine. Bioelectronics in Medicine, 2019, 2, 89-99.	2.0	80
8	Electrochemically Controlled Drug Release from a Conducting Polymer Hydrogel (PDMAAp/PEDOT) for Local Therapy and Bioelectronics. Advanced Healthcare Materials, 2019, 8, e1801488.	3.9	71
9	An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces. Acta Biomaterialia, 2017, 58, 365-375.	4.1	70
10	Conformable polyimide-based $\hat{l}^{1}\!\!/\!\!4$ ECoGs: Bringing the electrodes closer to the signal source. Biomaterials, 2020, 255, 120178.	5.7	58
11	NanoPt—A Nanostructured Electrode Coating for Neural Recording and Microstimulation. ACS Applied Materials & Interfaces, 2020, 12, 14855-14865.	4.0	44
12	A detailed insight into drug delivery from PEDOT based on analytical methods: Effects and side effects. Journal of Biomedical Materials Research - Part A, 2015, 103, 1200-1207.	2.1	38
13	Tuning drug delivery from conducting polymer films for accurately controlled release of charged molecules. Journal of Controlled Release, 2019, 304, 173-180.	4.8	35
14	Advancing Science: How Bias Holds Us Back. Neuron, 2018, 99, 635-639.	3.8	32
15	Poly(3,4â€ethylenedioxythiophene)â€Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and In Vivo Applications. Advanced Science, 2022, 9, e2104701.	5.6	32
16	On the longevity of flexible neural interfaces: Establishing biostability of polyimide-based intracortical implants. Biomaterials, 2022, 281, 121372.	5.7	27
17	Anti-inflammatory polymer electrodes for glial scar treatment: bringing the conceptual idea to future results. Frontiers in Neuroengineering, 2014, 7, 9.	4.8	23
18	A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers. Scientific Reports, 2016, 6, 19574.	1.6	20

#	Article	IF	CITATIONS
19	Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces. Biomedizinische Technik, 2018, 63, 301-315.	0.9	20
20	SIROF stabilized PEDOT/PSS allows biocompatible and reversible direct current stimulation capable of driving electrotaxis in cells. Biomaterials, 2021, 275, 120949.	5.7	19
21	Analytical methods to determine electrochemical factors in electrotaxis setups and their implications for experimental design. Bioelectrochemistry, 2016, 109, 41-48.	2.4	17
22	Waferâ€Scale Fabrication of Conducting Polymer Hydrogels for Microelectrodes and Flexible Bioelectronics. Advanced Biology, 2019, 3, e1900072.	3.0	16
23	Engineering strategies towards overcoming bleeding and glial scar formation around neural probes. Cell and Tissue Research, 2022, 387, 461-477.	1.5	14
24	A Subdural Bioelectronic Implant to Record Electrical Activity from the Spinal Cord in Freely Moving Rats. Advanced Science, 2022, 9, e2105913.	5.6	10
25	Skin stimulation and recording: Moving towards metal-free electrodes. Biosensors and Bioelectronics: X, 2022, , 100143.	0.9	7
26	Active Control of Dye Release for Neuronal Tracing Using PEDOT-PSS Coated Electrodes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 299-306.	2.7	6
27	A double-sided fabrication process for intrafascicular parylene C based electrode arrays. , 2016, 2016, 2798-2801.		3
28	Concept and Development of an Electronic Framework Intended for Electrode and Surrounding Environment Characterization In Vivo. Sensors, 2017, 17, 59.	2.1	3
29	Stretchable Electronics Based on Laser Structured, Vapor Phase Polymerized PEDOT/Tosylate. Polymers, 2020, 12, 1654.	2.0	3
30	Technology-based approaches toward a better understanding of neuro-coagulation in brain homeostasis. Cell and Tissue Research, 2022, 387, 493-498.	1.5	3
31	Accurate neuronal tracing of microelectrodes based on PEDOT-dye coatings. , 2015, , .		2