
Mohammad Amani Tehran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1810936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid camouflage pattern generation using neural style transfer method. Color Research and Application, 2022, 47, 878-891.	1.6	2
2	Optimal camouflage colors determination using spectral reflectance of realâ€scene objects. Color Research and Application, 2021, 46, 341-349.	1.6	1
3	Fabrication of PCL nanofibrous scaffold with tuned porosity for neural cell culture. Progress in Biomaterials, 2021, 10, 151-160.	4.5	3
4	Incorporation of F-MWCNTs into electrospun nanofibers regulates osteogenesis through stiffness and nanotopography. Materials Science and Engineering C, 2020, 106, 110163.	7.3	21
5	Distance metrics for very large color differences. Color Research and Application, 2020, 45, 208-223.	1.6	10
6	Colour metrics for image edge detection. Color Research and Application, 2020, 45, 632-643.	1.6	8
7	Fabrication of Biocompatible PLGA/PCL/PANI Nanofibrous Scaffolds with Electrical Excitability. , 2020, , 39-42.		0
8	Mathematical Modeling and Experimental Evaluation for the predication of single nanofiber modulus. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 38-45.	3.1	5
9	Experimental and theoretical investigation of hollow polyester fibers effect on impact behavior of composites. Journal of Industrial Textiles, 2018, 47, 1528-1542.	2.4	5
10	Characterization of photocatalytic composite nanofiber yarns with respect to their tensile properties. Journal of Industrial Textiles, 2018, 47, 921-937.	2.4	1
11	Predictive model for the frictional characteristics of woven fabrics optimized by the genetic algorithm. Journal of the Textile Institute, 2018, 109, 1083-1090.	1.9	6
12	Fabrication of Biocompatible PLGA/PCL/PANI Nanofibrous Scaffolds with Electrical Excitability. Fibers and Polymers, 2018, 19, 1813-1819.	2.1	21
13	Conductive 3D structure nanofibrous scaffolds for spinal cord regeneration. Fibers and Polymers, 2017, 18, 1874-1881.	2.1	22
14	A new manufacturable filter design approach for spectral reflectance estimation. Color Research and Application, 2017, 42, 316-326.	1.6	8
15	Image-based spectral transmission estimation using "sensitivity comparison― Applied Optics, 2017, 56, 417.	2.1	2
16	Quantification and prediction of visually perceived specular gloss at three illumination/viewing geometries. Journal of Coatings Technology Research, 2016, 13, 239-256.	2.5	3
17	Investigating the characteristics of two different methods in nanofiber yarn coloration. Journal of the Textile Institute, 2016, 107, 833-841.	1.9	6
18	Developing optically efficient nanofiber coatings inspired by Cyphochilus white beetle. Journal of Industrial Textiles, 2016, 46, 495-509.	2.4	14

#	Article	IF	CITATIONS
19	Metric for evaluation of filter efficiency in spectral cameras. Applied Optics, 2016, 55, 9193.	2.1	6
20	Color naming for the Persian language. Color Research and Application, 2015, 40, 352-360.	1.6	6
21	On-line Loom Weft Density Control System Design. Journal of Engineered Fibers and Fabrics, 2015, 10, 155892501501000.	1.0	о
22	Analysis of Frictional Behavior of Woven Fabrics by a Multi-directional Tactile Sensing Mechanism. Journal of Engineered Fibers and Fabrics, 2015, 10, 155892501501000.	1.0	2
23	A new approach to theoretical modeling of heat transfer through fibrous layers incorporated with microcapsules of phase change materials. Thermochimica Acta, 2015, 604, 24-32.	2.7	11
24	TiO2 nanofiber yarns: A prospective candidate as a photocatalyst. Journal of Industrial and Engineering Chemistry, 2015, 23, 182-187.	5.8	8
25	Surface Roughness Assessment of Woven Fabrics Using Fringe Projection Moiré Techniques. Fibres and Textiles in Eastern Europe, 2015, 23, 76-84.	0.5	8
26	Characterizing cotton yarn appearance due to yarn-to-yarn abrasion by image processing. Journal of the Textile Institute, 2014, 105, 477-482.	1.9	2
27	Use of "colorants replacement technique―in order to reduce the amount of dye consumed in textile dyeing processes. Journal of the Textile Institute, 2014, 105, 119-128.	1.9	2
28	Effect of Nanoporous Fibers on Growth and Proliferation of Cells on Electrospun Poly (ϵ-caprolactone) Scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 57-64.	3.4	24
29	Innovative method for electrospinning of continuous TiO2 nanofiber yarns: Importance of auxiliary polymer and solvent selection. Journal of Industrial and Engineering Chemistry, 2014, 20, 1886-1891.	5.8	23
30	Drug release profile in core–shell nanofibrous structures: A study on Peppas equation and artificial neural network modeling. Computer Methods and Programs in Biomedicine, 2014, 113, 92-100.	4.7	42
31	The application of Cd Se/ZnS quantum dots and confocal laser scanning microscopy for three-dimensional imaging of nanofibrous structures. Journal of Industrial Textiles, 2014, 43, 496-510.	2.4	14
32	Evaluation of dynamic thermal behavior of fibrous layers in presence of phase change material microcapsules. Thermochimica Acta, 2014, 594, 16-23.	2.7	12
33	Promotion of spinal cord axon regeneration by 3D nanofibrous core–sheath scaffolds. Journal of Biomedical Materials Research - Part A, 2014, 102, 506-513.	4.0	60
34	A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nanofibrous materials. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2107-2117.	4.0	57
35	The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. Journal of Materials Science: Materials in Medicine, 2013, 24, 1551-1560.	3.6	110
36	Effects of PLGA nanofibrous scaffolds structure on nerve cell directional proliferation and morphology. Fibers and Polymers, 2013, 14, 698-702.	2.1	15

#	Article	IF	CITATIONS
37	Construction of drag force measuring system to characterize the hydrodynamics properties of swimsuit fabrics. Journal of Industrial Textiles, 2013, 43, 264-280.	2.4	3
38	Electrospun core–shell nanofibers for drug encapsulation and sustained release. Polymer Engineering and Science, 2013, 53, 1770-1779.	3.1	64
39	Threeâ€dimensional pore structure analysis of Nano/Microfibrous scaffolds using confocal laser scanning microscopy. Journal of Biomedical Materials Research - Part A, 2013, 101A, 765-774.	4.0	47
40	Improvement of Impact Damage Resistance of Epoxy-Matrix Composites Using Ductile Hollow Fibers. Journal of Engineered Fibers and Fabrics, 2013, 8, 155892501300800.	1.0	5
41	Prediction of False Twist Textured Yarn Properties by Artificial Neural Network Methodology. Journal of Engineered Fibers and Fabrics, 2013, 8, 155892501300800.	1.0	7
42	Precise Measurement of Tension on Curvature Elastic Shells. Journal of Engineered Fibers and Fabrics, 2013, 8, 155892501300800.	1.0	1
43	Transport properties of multi-layer fabric based on electrospun nanofiber mats as a breathable barrier textile material. Textile Reseach Journal, 2012, 82, 70-76.	2.2	102
44	Estimation on the 3D porosity of plain knitted fabric under uniaxial extension. Fibers and Polymers, 2012, 13, 535-541.	2.1	6
45	Investigating the Effect of False Twist Texturing Process on the Color Coordinates Variation of Spun-dyed Polyester Filament Yarns. Journal of Engineered Fibers and Fabrics, 2011, 6, 155892501100600.	1.0	5
46	Spectral dependence of colorimetric characterisation of scanners. Coloration Technology, 2011, 127, 240-245.	1.5	1
47	Rank ordering and image processing methods aided fabric wrinkle evaluation. Fibers and Polymers, 2011, 12, 830-835.	2.1	9
48	Producing continuous twisted yarn from wellâ€aligned nanofibers by water vortex. Polymer Engineering and Science, 2011, 51, 323-329.	3.1	77
49	Applying metamer sets to investigate data dependency of principal component analysis method in recovery of spectral data. Color Research and Application, 2011, 36, 349-354.	1.6	2
50	Investigating the accuracy of prediction pressure by laplace law in pressureâ€garment applications. Journal of Applied Polymer Science, 2011, 121, 2699-2704.	2.6	15
51	Investigating the effect of texture on the performance of color difference formulae. Color Research and Application, 2010, 35, 94-100.	1.6	7
52	Evaluation of scanner capability for measuring the color of fabrics with different textures in different setups. Fibers and Polymers, 2010, 11, 767-774.	2.1	7
53	Assessing the equation of state and comparing it with other relationships used for determining the surface tension of solids. Applied Surface Science, 2010, 256, 1983-1991.	6.1	6
54	Effect of Accelerated Aging on the Color and Opacity of Resin Cements. Operative Dentistry, 2010, 35, 605-609.	1.2	43

#	Article	IF	CITATIONS
55	Simulation of ballistic impact on fabric armour using finite-element method. Journal of the Textile Institute, 2009, 100, 314-318.	1.9	4
56	New method for obtaining proper initial clusters to perform FCM algorithm for colour image clustering. Journal of the Textile Institute, 2009, 100, 237-244.	1.9	10
57	Nondestructive Identification of Knot Types in Hand-Made Carpet. PartÂl: Feature Extraction from Grey Images. Journal of Nondestructive Evaluation, 2009, 28, 55-62.	2.4	5
58	Definition of structural features of nano coated webs by image processing methods. International Journal of Nanotechnology, 2009, 6, 1131.	0.2	7
59	Interactive genetic algorithm-aided generation of carpet pattern. Journal of the Textile Institute, 2009, 100, 556-564.	1.9	10
60	Colour dependency of textile samples on the surface texture. Coloration Technology, 2008, 124, 348-354.	1.5	16
61	AN ARTIFICIAL NEURAL NETWORK APPROACH TO CAPILLARY RISE IN POROUS MEDIA. Chemical Engineering Communications, 2007, 195, 435-448.	2.6	6
62	Color recipe prediction by Genetic Algorithm. Dyes and Pigments, 2007, 74, 677-683.	3.7	18
63	Application of artificial neural network (ANN) in order to predict the surface free energy of powders using the capillary rise method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 280-285.	4.7	18
64	Effect of Color Sample Lightness on the Performance of PCA Method in Representation of Spectral Reflectance. Journal of Textile Engineering, 2007, 53, 211-216.	0.2	0
65	Grading of Yarn Appearance Using Image Analysis and an Artificial Intelligence Technique. Textile Reseach Journal, 2006, 76, 187-196.	2.2	16
66	Development of Appearance Grading Method of Cotton Yarns for Various Types of Yarns. Research Journal of Textile and Apparel, 2005, 9, 86-93.	1.1	5
67	Effect of yarn appearance on apparent quality of weft knitted fabric. Journal of the Textile Institute, 2005, 96, 295-301.	1.9	16
68	Characterizing bulkiness and hairiness of air-jet textured yarn using imaging techniques. Journal of the Textile Institute, 2005, 96, 251-255.	1.9	19
69	A theoretical analysis for fiber contacts in multilayer nanofibrous assemblies. Textile Reseach Journal, 0, , 004051751245676.	2.2	2
70	A Study on Electrospun Nanofibrous Mats for Local Antibiotic Delivery. Advanced Materials Research, 0, 829, 510-514.	0.3	4
71	New approach for simultaneous measurement of elastic modulus and initial length of viscoelastic material. Journal of the Textile Institute, 0, , 1-8.	1.9	0