Michael J Sadowsky

List of Publications by Citations

Source: https://exaly.com/author-pdf/1810823/michael-j-sadowsky-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

446 papers

20,439 citations

74 h-index 123 g-index

476 ext. papers

23,928 ext. citations

6.1 avg, IF

7.03 L-index

#	Paper	IF	Citations
446	Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. <i>Microbiome</i> , 2017 , 5, 10	16.6	595
445	Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. <i>Journal of Clinical Gastroenterology</i> , 2010 , 44, 354-60	3	499
444	Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. <i>American Journal of Gastroenterology</i> , 2012 , 107, 761-7	0.7	466
443	Use of repetitive DNA sequences and the PCR To differentiate Escherichia coli isolates from human and animal sources. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 2572-7	4.8	374
442	Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 612-21	4.8	372
441	Effect of Fecal Microbiota Transplantation on Recurrence in Multiply Recurrent Clostridium difficile Infection: A Randomized Trial. <i>Annals of Internal Medicine</i> , 2016 , 165, 609-616	8	344
440	Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. <i>Journal of Bacteriology</i> , 2001 , 183, 5684-97	3.5	303
439	Escherichia coli in the Environment: Implications for Water Quality and Human Health. <i>Microbes and Environments</i> , 2008 , 23, 101-8	2.6	298
438	Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. <i>Applied Microbiology and Biotechnology</i> , 2002 , 58, 39-45	5.7	265
437	Hydrothermal carbonization of microalgae. <i>Biomass and Bioenergy</i> , 2010 , 34, 875-882	5.3	256
436	Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. <i>American Journal of Physiology - Renal Physiology</i> , 2014 , 306, G310-9	5.1	254
435	Understanding the mechanisms of faecal microbiota transplantation. <i>Nature Reviews Gastroenterology and Hepatology</i> , 2016 , 13, 508-16	24.2	245
434	Interaction of gut microbiota with bile acid metabolism and its influence on disease states. <i>Applied Microbiology and Biotechnology</i> , 2017 , 101, 47-64	5.7	235
433	Environmental Escherichia coli: ecology and public health implications-a review. <i>Journal of Applied Microbiology</i> , 2017 , 123, 570-581	4.7	230
432	High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. <i>Gut Microbes</i> , 2013 , 4, 125-35	8.8	218
431	Genetics of competition for nodulation of legumes. <i>Annual Review of Microbiology</i> , 1992 , 46, 399-428	17.5	215
430	Proposed Minimal Standards for the Description of New Genera and Species of Root- and Stem-Nodulating Bacteria. <i>International Journal of Systematic Bacteriology</i> , 1991 , 41, 582-587		209

429	The atrazine catabolism genes atzABC are widespread and highly conserved. <i>Journal of Bacteriology</i> , 1998 , 180, 1951-4	3.5	206	
428	Atrazine chlorohydrolase from Pseudomonas sp. strain ADP: gene sequence, enzyme purification, and protein characterization. <i>Journal of Bacteriology</i> , 1996 , 178, 4894-900	3.5	197	
427	Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, E864-70	11.5	178	
426	Strain Tracking Reveals the Determinants of Bacterial Engraftment in the Human Gut Following Fecal Microbiota Transplantation. <i>Cell Host and Microbe</i> , 2018 , 23, 229-240.e5	23.4	177	
425	Dynamic changes in short- and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. <i>Microbiome</i> , 2015 , 3, 10	16.6	175	
424	Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected, and nonclinical Escherichia coli strains isolated from diverse human and animal sources. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 2503-7	4.8	175	
423	Molecular basis of a bacterial consortium: interspecies catabolism of atrazine. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 178-84	4.8	167	
422	Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. <i>PLoS Genetics</i> , 2006 , 2, e214	6	166	
421	Population structure, persistence, and seasonality of autochthonous Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed. <i>Environmental Microbiology</i> , 2006 , 8, 504-13	5.2	165	
420	Growth and survival of Escherichia coli and enterococci populations in the macro-alga Cladophora (Chlorophyta). <i>FEMS Microbiology Ecology</i> , 2003 , 46, 203-11	4.3	165	
419	Beach sand and sediments are temporal sinks and sources of Escherichia coli in Lake Superior. <i>Environmental Science & Environmental Science & Environ</i>	10.3	164	
418	Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 5973-80	4.8	162	
417	Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. <i>Journal of Applied Microbiology</i> , 2013 , 115, 1147-58	4.7	156	
416	Genetic Diversity in Bradyrhizobium japonicum Serogroup 123 and Its Relation to Genotype-Specific Nodulation of Soybean. <i>Applied and Environmental Microbiology</i> , 1987 , 53, 2624-30	4.8	155	
415	Inflammatory Bowel Disease Affects the Outcome of Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection. <i>Clinical Gastroenterology and Hepatology</i> , 2016 , 14, 1433-8	6.9	149	
414	Sample size, library composition, and genotypic diversity among natural populations of Escherichia coli from different animals influence accuracy of determining sources of fecal pollution. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4478-85	4.8	145	
413	Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. <i>Journal of Bacteriology</i> , 2007 , 189, 6751-62	3.5	142	
412	AtzC is a new member of the amidohydrolase protein superfamily and is homologous to other atrazine-metabolizing enzymes. <i>Journal of Bacteriology</i> , 1998 , 180, 152-8	3.5	135	

411	Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 4545-53	4.8	131
410	Environmental fate of two sulfonamide antimicrobial agents in soil. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 2677-82	5.7	124
409	The atzB gene of Pseudomonas sp. strain ADP encodes the second enzyme of a novel atrazine degradation pathway. <i>Applied and Environmental Microbiology</i> , 1997 , 63, 916-23	4.8	124
408	Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. <i>Environmental Microbiology</i> , 2000 , 2, 91-8	5.2	122
407	The atzABC genes encoding atrazine catabolism are located on a self-transmissible plasmid in Pseudomonas sp. strain ADP. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 2323-6	4.8	122
406	Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. <i>Journal of Experimental Medicine</i> , 2013 , 210, 2011-24	16.6	121
405	Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. <i>PLoS ONE</i> , 2013 , 8, e6568	83.7	121
404	Genomes of the symbiotic nitrogen-fixing bacteria of legumes. <i>Plant Physiology</i> , 2007 , 144, 615-22	6.6	120
403	The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1991 , 88, 637-41	11.5	118
402	Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. <i>Applied Energy</i> , 2011 , 88, 3286-3290	10.7	117
401	Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. <i>Plant Physiology</i> , 2010 , 153, 1808-22	6.6	116
400	Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. <i>Genome Biology</i> , 2013 , 14, R17	18.3	114
399	Hydrothermal carbonization of distiller grains. <i>Biomass and Bioenergy</i> , 2011 , 35, 2526-2533	5.3	113
398	Successful Resolution of Recurrent Clostridium difficile Infection using Freeze-Dried, Encapsulated Fecal Microbiota; Pragmatic Cohort Study. <i>American Journal of Gastroenterology</i> , 2017 , 112, 940-947	0.7	109
397	Melamine deaminase and atrazine chlorohydrolase: 98 percent identical but functionally different. Journal of Bacteriology, 2001 , 183, 2405-10	3.5	108
396	Peptide-mediated shape- and size-tunable synthesis of gold nanostructures. <i>Acta Biomaterialia</i> , 2010 , 6, 2681-9	10.8	106
395	Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to Free Air Carbon dioxide Enrichment (FACE). <i>Soil Biology and Biochemistry</i> , 1996 , 28, 1717-1724	7.5	105
394	Cloning, characterization, and expression of a gene region from Pseudomonas sp. strain ADP involved in the dechlorination of atrazine. <i>Applied and Environmental Microbiology</i> , 1995 , 61, 3373-8	4.8	104

(2005-2007)

Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 20410-5	11.5	100
Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. <i>Frontiers in Plant Science</i> , 2015 , 6, 491	6.2	99
Microbes in Beach Sands: Integrating Environment, Ecology and Public Health. <i>Reviews in Environmental Science and Biotechnology</i> , 2014 , 13, 329-368	13.9	98
Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. <i>Science of the Total Environment</i> , 2015 , 505, 435-45	10.2	97
Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. <i>Environmental Science & Environmental Science & </i>	10.3	95
Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution. <i>Environmental Microbiology</i> , 2009 , 11, 733-40	5.2	95
Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. <i>Applied and Environmental Microbiology</i> , 1993 , 59, 1702-8	4.8	94
Environment shapes the fecal microbiome of invasive carp species. <i>Microbiome</i> , 2016 , 4, 44	16.6	90
Relationship between phylogenetic groups, genotypic clusters, and virulence gene profiles of Escherichia coli strains from diverse human and animal sources. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 5703-10	4.8	90
Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth. <i>PLoS ONE</i> , 2016 , 11, e0147210	3.7	90
Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. <i>Scientific Reports</i> , 2015 , 5, 12153	4.9	89
Metabolism of polyhalogenated compounds by a genetically engineered bacterium. <i>Nature</i> , 1994 , 368, 627-9	50.4	89
Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 5620-7	10.3	88
Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4402-7	4.8	87
Evolution of catabolic pathways: Genomic insights into microbial s-triazine metabolism. <i>Journal of Bacteriology</i> , 2007 , 189, 674-82	3.5	84
A manganese-dependent dioxygenase from Arthrobacter globiformis CM-2 belongs to the major extradiol dioxygenase family. <i>Journal of Bacteriology</i> , 1995 , 177, 1225-32	3.5	84
Presence and sources of fecal coliform bacteria in epilithic periphyton communities of Lake Superior. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 3771-8	4.8	83
Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. <i>Plant Biotechnology Journal</i> , 2005 , 3, 475-86	11.6	78
	Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20410-5 Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Frontiers in Plant Science, 2015, 6, 491 Microbes in Beach Sands: Integrating Environment, Ecology and Public Health. Reviews in Environmental Science and Biotechnology, 2014, 13, 329-368 Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Science of the Total Environment, 2015, 505, 435-45 Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. Environmental Science & amp; Technology, 2010, 44, 7777-82 Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution. Environmental Microbiology, 2009, 11, 733-40 Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. Applied and Environmental Microbiology, 1993, 59, 1702-8 Environment shapes the fecal microbiome of invasive carp species. Microbiome, 2016, 4, 44 Relationship between phylogenetic groups, genotypic clusters, and virulence gene profiles of Escherichia coli strains from diverse human and animal sources. Applied and Environmental Microbiology, 2007, 73, 5703-10 Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth. PLoS ONE, 2016, 11, e0147210 Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. Scientific Reports, 2015, 5, 12153 Metabolism of polyhalogenated compounds by a genetically engineered bacterium. Nature, 1994, 368, 627-9 Feat of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids. Environmental Science Bamp; Technology, 2007, 484, 5520-7 Arthrobacter aurescens T	Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. <i>Frontiers in Plant Science</i> , 2015, 6, 491 Microbes in Beach Sands: Integrating Environment, Ecology and Public Health. <i>Reviews in Environmental Science and Biotechnology</i> , 2014, 13, 329-368 Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. <i>Science of the Total Environment</i> , 2015, 505, 435-45 Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds. <i>Environmental Science & amp</i> ; <i>Technology</i> , 2010, 44, 7777-82 Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution. <i>Environmental Microbiology</i> , 2003, 11, 733-40 Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. <i>Applied and Environmental Microbiology</i> , 1933, 59, 1702-8 Environment shapes the fecal microbiome of invasive carp species. <i>Microbiome</i> , 2016, 4, 44 Relationship between phylogenetic groups, genotypic clusters, and virulence gene profiles of Escherichia coli strains from diverse human and animal sources. <i>Applied and Environmental Microbiology</i> , 2007, 73, 5703-10 Changes in Colonic Bila Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth. <i>PLoS ONE</i> , 2016, 11, e0147210 Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. <i>Scientific Reports</i> , 2015, 5, 12153 Metabolism of polyhalogenated compounds by a genetically engineered bacterium. <i>Nature</i> , 1994, 368, 627-9 Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids. <i>Environmental Science & amp</i> ; <i>Technology</i> , 2014, 48, 5620-7 Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kil

375	Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. <i>Microbiome</i> , 2017 , 5, 87	16.6	77
374	Species and genus level resolution analysis of gut microbiota in Clostridium difficile patients following fecal microbiota transplantation. <i>Microbiome</i> , 2014 , 2, 13	16.6	77
373	Sphingobacterium sp. strain PM2-P1-29 harbours a functional tet(X) gene encoding for the degradation of tetracycline. <i>Journal of Applied Microbiology</i> , 2009 , 106, 1336-42	4.7	77
372	Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 1752-64	4.8	73
371	Influence of soil variables on in situ plasmid transfer from Escherichia coli to Rhizobium fredii. <i>Applied and Environmental Microbiology</i> , 1989 , 55, 1730-4	4.8	73
370	Resolution of severe Clostridium difficile infection following sequential fecal microbiota transplantation. <i>Journal of Clinical Gastroenterology</i> , 2013 , 47, 735-7	3	71
369	Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. <i>Plant and Soil</i> , 2002 , 243, 197-207	4.2	71
368	Ursodeoxycholic Acid Inhibits Clostridium difficile Spore Germination and Vegetative Growth, and Prevents the Recurrence of Ileal Pouchitis Associated With the Infection. <i>Journal of Clinical Gastroenterology</i> , 2016 , 50, 624-30	3	69
367	Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. <i>Science of the Total Environment</i> , 2016 , 566-567, 949-959	10.2	69
366	An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum. <i>Molecular Plant-Microbe Interactions</i> , 2007 , 20, 1298-307	3.6	69
365	Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds. <i>Water Research</i> , 2009 , 43, 806-14	12.5	68
364	Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 1071-81	4.8	67
363	Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community. <i>Environmental Science & Environmental & Environmental</i>	10.3	66
362	Therapeutic transplantation of the distal gut microbiota. <i>Mucosal Immunology</i> , 2011 , 4, 4-7	9.2	66
361	Complete Microbiota Engraftment Is Not Essential for Recovery from Recurrent Clostridium difficile Infection following Fecal Microbiota Transplantation. <i>MBio</i> , 2016 , 7,	7.8	66
360	Biochemical Characterization of Fast- and Slow-Growing Rhizobia That Nodulate Soybeans. <i>International Journal of Systematic Bacteriology</i> , 1983 , 33, 716-722		65
359	Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. <i>Frontiers in Microbiology</i> , 2014 , 5, 414	5.7	64
358	Current understanding of microbiota- and dietary-therapies for treating inflammatory bowel disease. <i>Journal of Microbiology</i> , 2018 , 56, 189-198	3	63

(2010-1988)

357	Two host-inducible genes of Rhizobium fredii and characterization of the inducing compound. Journal of Bacteriology, 1988 , 170, 171-8	3.5	63
356	Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. <i>Scientific Reports</i> , 2018 , 8, 6219	4.9	61
355	Bacterial community structure is indicative of chemical inputs in the Upper Mississippi River. <i>Frontiers in Microbiology</i> , 2014 , 5, 524	5.7	61
354	Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters. <i>Environment International</i> , 2018 , 116, 308-318	12.9	61
353	Solvent extraction characterization of bioavailability of atrazine residues in soils. <i>Journal of Agricultural and Food Chemistry</i> , 2004 , 52, 6552-6	5.7	60
352	Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. <i>Global Change Biology</i> , 2000 , 6, 475-482	11.4	60
351	Substrate specificity of atrazine chlorohydrolase and atrazine-catabolizing bacteria. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 4247-52	4.8	59
350	Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids. <i>Frontiers in Microbiology</i> , 2013 , 4, 17	5.7	58
349	On the origins of cyanuric acid hydrolase: purification, substrates, and prevalence of AtzD from Pseudomonas sp. strain ADP. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 3653-7	4.8	58
348	Quantitative microbial risk assessment of microbial source tracking markers in recreational water contaminated with fresh untreated and secondary treated sewage. <i>Environment International</i> , 2018 , 117, 243-249	12.9	57
347	Population genomics of the facultatively mutualistic bacteria Sinorhizobium meliloti and S. medicae. <i>PLoS Genetics</i> , 2012 , 8, e1002868	6	56
346	Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 706	5 1 -77	55
345	Influence of earthworm activity on gene transfer from Pseudomonas fluorescens to indigenous soil bacteria. <i>Applied and Environmental Microbiology</i> , 1996 , 62, 515-21	4.8	55
344	Biodegradation in Waters from Hydraulic Fracturing: Chemistry, Microbiology, and Engineering. Journal of Environmental Engineering, ASCE, 2014 , 140,	2	54
343	Influence of soil aging on sorption and bioavailability of simazine. <i>Journal of Agricultural and Food Chemistry</i> , 2006 , 54, 1373-9	5.7	54
342	Comparison of genotypic-based microbial source tracking methods requiring a host origin database. <i>Journal of Water and Health</i> , 2003 , 1, 167-180	2.2	54
341	Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 4437-45	4.8	54
340	Identification of a Brevibacterium marker gene specific to poultry litter and development of a quantitative PCR assay. <i>Journal of Applied Microbiology</i> , 2010 , 109, 334-47	4.7	53

339	Beach sand and the potential for infectious disease transmission: observations and recommendations. <i>Journal of the Marine Biological Association of the United Kingdom</i> , 2016 , 96, 101-120) ^{1.1}	53
338	Enteric pathogen-plant interactions: molecular connections leading to colonization and growth and implications for food safety. <i>Microbes and Environments</i> , 2014 , 29, 123-35	2.6	52
337	Nitrification gene ratio and free ammonia explain nitrite and nitrous oxide production in urea-amended soils. <i>Soil Biology and Biochemistry</i> , 2017 , 111, 143-153	7.5	51
336	Atrazine chlorohydrolase from Pseudomonas sp. strain ADP is a metalloenzyme. <i>Biochemistry</i> , 2002 , 41, 14430-7	3.2	51
335	Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria. <i>ACS Synthetic Biology</i> , 2013 , 2, 643-50	5.7	50
334	Structure of bacterial communities in soil following cover crop and organic fertilizer incorporation. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 9331-9341	5.7	50
333	A Selective Medium for the Isolation and Quantification of Bradyrhizobium japonicum and Bradyrhizobium elkanii Strains from Soils and Inoculants. <i>Applied and Environmental Microbiology</i> , 1994 , 60, 581-6	4.8	49
332	Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation. <i>Microbiome</i> , 2018 , 6, 166	16.6	49
331	Evaluation of molecular community analysis methods for discerning fecal sources and human waste. <i>Water Research</i> , 2013 , 47, 6862-72	12.5	48
330	Evaluation of the repeatability and reproducibility of a suite of qPCR-based microbial source tracking methods. <i>Water Research</i> , 2013 , 47, 6839-48	12.5	48
329	Large scale analysis of virulence genes in Escherichia coli strains isolated from Avalon Bay, CA. <i>Water Research</i> , 2010 , 44, 5463-73	12.5	48
328	Substrate specificity and colorimetric assay for recombinant TrzN derived from Arthrobacter aurescens TC1. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 2214-20	4.8	48
327	Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan. <i>Water Research</i> , 2007 , 41, 3649-54	12.5	47
326	Competition of Rhizobium japonicum Strains in Early Stages of Soybean Nodulation. <i>Applied and Environmental Microbiology</i> , 1983 , 46, 870-3	4.8	47
325	Multi-laboratory evaluations of the performance of Catellicoccus marimammalium PCR assays developed to target gull fecal sources. <i>Water Research</i> , 2013 , 47, 6883-96	12.5	46
324	Biogenic formation of As-S nanotubes by diverse Shewanella strains. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 6896-9	4.8	46
323	Select and resequence reveals relative fitness of bacteria in symbiotic and free-living environments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 2425-2430	11.5	45
322	Effect of Different Treatment Technologies on the Fate of Antibiotic Resistance Genes and Class 1 Integrons when Residual Municipal Wastewater Solids are Applied to Soil. <i>Environmental Science & Environmental Science</i>	10.3	45

(2011-2002)

321	Purification, substrate range, and metal center of AtzC: the N-isopropylammelide aminohydrolase involved in bacterial atrazine metabolism. <i>Journal of Bacteriology</i> , 2002 , 184, 5376-84	3.5	45	
320	Plasmids pJP4 and r68.45 Can Be Transferred between Populations of Bradyrhizobia in Nonsterile Soil. <i>Applied and Environmental Microbiology</i> , 1993 , 59, 1762-6	4.8	45	
319	Endophytic Bacterial Communities Associated with Roots and Leaves of Plants Growing in Chilean Extreme Environments. <i>Scientific Reports</i> , 2019 , 9, 4950	4.9	44	
318	Development of goose- and duck-specific DNA markers to determine sources of Escherichia coli in waterways. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 4012-9	4.8	44	
317	Soybean Genotype Restricting Nodulation of a Previously Unrestricted Serocluster 123 Bradyrhizobia. <i>Crop Science</i> , 1989 , 29, 307	2.4	44	
316	Factors controlling long-term survival and growth of naturalized Escherichia coli populations in temperate field soils. <i>Microbes and Environments</i> , 2010 , 25, 8-14	2.6	43	
315	Effects of incorporated corn residues on glyphosate mineralization and sorption in soil. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 4110-7	5.7	43	
314	Purification and characterization of allophanate hydrolase (AtzF) from Pseudomonas sp. strain ADP. <i>Journal of Bacteriology</i> , 2005 , 187, 3731-8	3.5	43	
313	Tellurium and Selenium Resistance in Rhizobia and Its Potential Use for Direct Isolation of Rhizobium meliloti from Soil. <i>Applied and Environmental Microbiology</i> , 1994 , 60, 1674-7	4.8	43	
312	Application of SourceTracker for Accurate Identification of Fecal Pollution in Recreational Freshwater: A Double-Blinded Study. <i>Environmental Science & Environmental Science</i>	10.3	42	
311	Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: a review. <i>Symbiosis</i> , 2017 , 71, 91-109	3	42	
310	TrzN from Arthrobacter aurescens TC1 Is a zinc amidohydrolase. <i>Journal of Bacteriology</i> , 2006 , 188, 585	93654	42	
309	Changes in human gut microbiota influenced by probiotic fermented milk ingestion. <i>Journal of Dairy Science</i> , 2015 , 98, 3568-76	4	41	
308	Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula. <i>BMC Genomics</i> , 2017 , 18, 578	4.5	41	
307	Diversity among Field Populations of Bradyrhizobium japonicum in Poland. <i>Applied and Environmental Microbiology</i> , 1995 , 61, 1194-200	4.8	41	
306	The population structure of Escherichia coli isolated from subtropical and temperate soils. <i>Science of the Total Environment</i> , 2012 , 417-418, 273-9	10.2	40	
305	A High-Throughput DNA-Sequencing Approach for Determining Sources of Fecal Bacteria in a Lake Superior Estuary. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	40	
304	The occurrence of virulence traits among high-level aminoglycosides resistant Enterococcus isolates obtained from feces of humans, animals, and birds in South Korea. <i>International Journal of Food Microbiology</i> , 2011 , 144, 387-92	5.8	40	

303	Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 619-27	5.7	39
302	Absence of Escherichia coli phylogenetic group B2 strains in humans and domesticated animals from Jeonnam Province, Republic of Korea. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 5659-66	4.8	39
301	Comparative decay of sewage-associated marker genes in beach water and sediment in a subtropical region. <i>Water Research</i> , 2019 , 149, 511-521	12.5	39
300	Air-drying beds reduce the quantities of antibiotic resistance genes and class 1 integrons in residual municipal wastewater solids. <i>Environmental Science & Environmental Sci</i>	10.3	38
299	Host Plant Effects on Nodulation and Competitiveness of the Bradyrhizobium japonicum Serotype Strains Constituting Serocluster 123. <i>Applied and Environmental Microbiology</i> , 1989 , 55, 2532-6	4.8	38
298	Erosion reduces soil microbial diversity, network complexity and multifunctionality. <i>ISME Journal</i> , 2021 , 15, 2474-2489	11.9	38
297	Use of repetitive intergenic DNA sequences to classify pathogenic and disease-suppressive Streptomyces strains. <i>Applied and Environmental Microbiology</i> , 1996 , 62, 3489-93	4.8	37
296	Complementary amplicon-based genomic approaches for the study of fungal communities in humans. <i>PLoS ONE</i> , 2015 , 10, e0116705	3.7	37
295	Isolation and Characterization of a Novel Imidacloprid-Degrading Mycobacterium sp. Strain MK6 from an Egyptian Soil. <i>Journal of Agricultural and Food Chemistry</i> , 2015 , 63, 4721-7	5.7	36
294	Synergy between quantitative microbial source tracking (qMST) and quantitative microbial risk assessment (QMRA): A review and prospectus. <i>Environment International</i> , 2019 , 130, 104703	12.9	36
293	Durable Long-Term Bacterial Engraftment following Encapsulated Fecal Microbiota Transplantation To Treat Clostridium difficile Infection. <i>MBio</i> , 2019 , 10,	7.8	36
292	Optimization of conditions for decolorization of azo-based textile dyes by multiple fungal species. Journal of Biotechnology, 2017 , 260, 11-17	3.7	36
291	A Community Multi-Omics Approach towards the Assessment of Surface Water Quality in an Urban River System. <i>International Journal of Environmental Research and Public Health</i> , 2017 , 14,	4.6	36
290	Putative Nitrogen-Fixing Bacteria Associated With the Rhizosphere and Root Endosphere of Wheat Plants Grown in an Andisol From Southern Chile. <i>Frontiers in Microbiology</i> , 2018 , 9, 2710	5.7	36
289	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. <i>Science of the Total Environment</i> , 2022 , 805, 149877	10.2	36
288	Decay of genetic markers for fecal bacterial indicators and pathogens in sand from Lake Superior. <i>Water Research</i> , 2014 , 59, 99-111	12.5	35
287	Whole-genome transcriptional profiling of Bradyrhizobium japonicum during chemoautotrophic growth. <i>Journal of Bacteriology</i> , 2008 , 190, 6697-705	3.5	35
286	Isolation of mesotrione-degrading bacteria from aquatic environments in Brazil. <i>Chemosphere</i> , 2012 , 86, 1127-32	8.4	34

(2016-2013)

285	Association of toxin-producing Clostridium botulinum with the macroalga Cladophora in the Great Lakes. <i>Environmental Science & Environmental Science </i>	10.3	34	
284	A pilot study of fecal bile acid and microbiota profiles in inflammatory bowel disease and primary sclerosing cholangitis. <i>Clinical and Experimental Gastroenterology</i> , 2019 , 12, 9-19	3.1	33	
283	A novel microbial source tracking microarray for pathogen detection and fecal source identification in environmental systems. <i>Environmental Science & Environmental Science &</i>	10.3	33	
282	Integrated online system for a pyrosequencing-based microbial source tracking method that targets Bacteroidetes 16S rDNA. <i>Environmental Science & Environmental Science & Env</i>	10.3	33	
281	Manganese(II) active site mutants of 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis strain CM-2. <i>Biochemistry</i> , 1997 , 36, 2147-53	3.2	33	
2 80	Nodulation gene regulation and quorum sensing control density-dependent suppression and restriction of nodulation in the Bradyrhizobium japonicum-soybean symbiosis. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 3749-56	4.8	33	
279	Plasmid Transfer between Spatially Separated Donor and Recipient Bacteria in Earthworm-Containing Soil Microcosms. <i>Applied and Environmental Microbiology</i> , 1997 , 63, 679-86	4.8	33	
278	Sleeve gastrectomy drives persistent shifts in the gut microbiome. <i>Surgery for Obesity and Related Diseases</i> , 2017 , 13, 916-924	3	32	
277	Development of fecal microbiota transplantation suitable for mainstream medicine. <i>Clinical Gastroenterology and Hepatology</i> , 2015 , 13, 246-50	6.9	32	
276	Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability. <i>Biology and Fertility of Soils</i> , 2019 , 55, 121-134	6.1	32	
275	Differential Impacts of Land-Based Sources of Pollution on the Microbiota of Southeast Florida Coral Reefs. <i>Applied and Environmental Microbiology</i> , 2017 , 83,	4.8	31	
274	Evaluation of water sampling methodologies for amplicon-based characterization of bacterial community structure. <i>Journal of Microbiological Methods</i> , 2015 , 114, 43-50	2.8	31	
273	Modeling the fate of antibiotic resistance genes and class 1 integrons during thermophilic anaerobic digestion of municipal wastewater solids. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 1437-1444	5.7	31	
272	Environmental and animal-associated enterococci. Advances in Applied Microbiology, 2014 , 87, 147-86	4.9	31	
271	Availability of triazine herbicides in aged soils amended with olive oil mill waste. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 4112-9	5.7	31	
270	Determining sources of fecal bacteria in waterways. <i>Environmental Monitoring and Assessment</i> , 2007 , 129, 97-106	3.1	31	
269	Phylogeny and distribution of extra-slow-growing Bradyrhizobium japonicum harboring high copy numbers of RSalpha, RSbeta and IS1631. <i>FEMS Microbiology Ecology</i> , 2003 , 44, 191-202	4.3	31	
268	Correlations between pathogen concentration and fecal indicator marker genes in beach environments. <i>Science of the Total Environment</i> , 2016 , 573, 826-830	10.2	31	

267	Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. <i>Nature Reviews Gastroenterology and Hepatology</i> , 2021 , 18, 67-80	24.2	31
266	Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism. <i>Microbiome</i> , 2017 , 5, 65	16.6	30
265	Fecal pollution: new trends and challenges in microbial source tracking using next-generation sequencing. <i>Environmental Microbiology</i> , 2018 , 20, 3132-3140	5.2	30
264	Survival and Competitiveness of Bradyrhizobium japonicum Strains 20 Years after Introduction into Field Locations in Poland. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 5552-9	4.8	29
263	The symbiovar trifolii of Rhizobium bangladeshense and Rhizobium aegyptiacum sp. nov. nodulate Trifolium alexandrinum in Egypt. <i>Systematic and Applied Microbiology</i> , 2016 , 39, 275-279	4.2	29
262	Amplicon-based taxonomic characterization of bacteria in urban and peri-urban roof-harvested rainwater stored in tanks. <i>Science of the Total Environment</i> , 2017 , 576, 326-334	10.2	29
261	Genes and Gut Bacteria Involved in Luminal Butyrate Reduction Caused by Diet and Loperamide. <i>Genes</i> , 2017 , 8,	4.2	29
260	Silica gel-encapsulated AtzA biocatalyst for atrazine biodegradation. <i>Applied Microbiology and Biotechnology</i> , 2012 , 96, 231-40	5.7	29
259	Pathogenic Escherichia coli strains producing extended-spectrum Elactamases in the Yeongsan River basin of South Korea. <i>Environmental Science & Emp; Technology</i> , 2013 , 47, 1128-36	10.3	29
258	Shewanella-mediated synthesis of selenium nanowires and nanoribbons. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5899		29
258 257		10.2	29
	Chemistry, 2010 , 20, 5899 Influence of seawater intrusion on microbial communities in groundwater. <i>Science of the Total</i>	10.2	
257	Chemistry, 2010, 20, 5899 Influence of seawater intrusion on microbial communities in groundwater. Science of the Total Environment, 2015, 532, 337-43 Impacts of a changing earth on microbial dynamics and human health risks in the continuum		28
² 57	Influence of seawater intrusion on microbial communities in groundwater. Science of the Total Environment, 2015, 532, 337-43 Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. Water Research, 2019, 162, 456-470 Incidence of naturally internalized bacteria in lettuce leaves. International Journal of Food	12.5	28
257256255	Influence of seawater intrusion on microbial communities in groundwater. Science of the Total Environment, 2015, 532, 337-43 Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. Water Research, 2019, 162, 456-470 Incidence of naturally internalized bacteria in lettuce leaves. International Journal of Food Microbiology, 2013, 162, 260-5 Complete Genome Sequence of the Sesbania Symbiont and Rice Growth-Promoting Endophyte	12.5	28 28 28
257 256 255 254	Influence of seawater intrusion on microbial communities in groundwater. Science of the Total Environment, 2015, 532, 337-43 Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. Water Research, 2019, 162, 456-470 Incidence of naturally internalized bacteria in lettuce leaves. International Journal of Food Microbiology, 2013, 162, 260-5 Complete Genome Sequence of the Sesbania Symbiont and Rice Growth-Promoting Endophyte Rhizobium sp. Strain IRBG74. Genome Announcements, 2013, 1, Identification of Genes Involved in the Rhizobium-Legume Symbiosis by Mu-dI (Kan, lac)-Generated	12.5	28 28 28 28
257256255254253	Influence of seawater intrusion on microbial communities in groundwater. Science of the Total Environment, 2015, 532, 337-43 Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. Water Research, 2019, 162, 456-470 Incidence of naturally internalized bacteria in lettuce leaves. International Journal of Food Microbiology, 2013, 162, 260-5 Complete Genome Sequence of the Sesbania Symbiont and Rice Growth-Promoting Endophyte Rhizobium sp. Strain IRBG74. Genome Announcements, 2013, 1, Identification of Genes Involved in the Rhizobium-Legume Symbiosis by Mu-dl (Kan, lac)-Generated Transcription Fusions. Bio/technology, 1985, 3, 143-149 Comprehensive Functional Analysis of the Enterococcus faecalis Core Genome Using an Ordered,	12.5 5.8	28 28 28 28

(2013-2005)

249	Detection of homoserine lactone-like quorum sensing molecules in bradyrhizobium strains. <i>Current Microbiology</i> , 2005 , 51, 250-4	2.4	27	
248	The role of histidine 200 in MndD, the Mn(II)-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis CM-2, a site-directed mutagenesis study. <i>Journal of Biological Inorganic Chemistry</i> , 2005 , 10, 751-60	3.7	27	
247	Cytochrome mutants of bradyrhizobium induced by transposon tn5. <i>Plant Physiology</i> , 1989 , 90, 553-9	6.6	27	
246	The Bradyrhizobium japonicum nolA gene encodes three functionally distinct proteins. <i>Journal of Bacteriology</i> , 1999 , 181, 1544-54	3.5	27	
245	Immune mediated shaping of microflora community composition depends on barrier site. <i>PLoS ONE</i> , 2014 , 9, e84019	3.7	27	
244	Environmental drivers of denitrification rates and denitrifying gene abundances in channels and riparian areas. <i>Water Resources Research</i> , 2017 , 53, 6523-6538	5.4	26	
243	Rapid identification and discrimination among Egyptian genotypes of Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti nodulating faba bean (Vicia faba L.) by analysis of nodC, ARDRA, and rDNA sequence analysis. <i>Soil Biology and Biochemistry</i> , 2009 , 41, 45-53	7.5	26	
242	Purification and characterization of TrzF: biuret hydrolysis by allophanate hydrolase supports growth. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 2491-5	4.8	26	
241	Enzymatic degradation of chlorodiamino-s-triazine. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 4672-5	4.8	26	
240	Serological Relatedness of Rhizobium fredii to Other Rhizobia and to the Bradyrhizobia. <i>Applied and Environmental Microbiology</i> , 1987 , 53, 1785-9	4.8	26	
239	The Soybean Rj4 Allele Restricts Nodulation by Bradyrhizobium japonicum Serogroup 123 Strains. <i>Applied and Environmental Microbiology</i> , 1992 , 58, 720-3	4.8	26	
238	Community dynamics drive punctuated engraftment of the fecal microbiome following transplantation using freeze-dried, encapsulated fecal microbiota. <i>Gut Microbes</i> , 2017 , 8, 276-288	8.8	25	
237	Synthesis and Biological Evaluation of Bile Acid Analogues Inhibitory to Clostridium difficile Spore Germination. <i>Journal of Medicinal Chemistry</i> , 2017 , 60, 3451-3471	8.3	25	
236	Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli strain DH5-⊞ <i>PLoS ONE</i> , 2014 , 9, e99960	3.7	25	
235	Defining sequence space and reaction products within the cyanuric acid hydrolase (AtzD)/barbiturase protein family. <i>Journal of Bacteriology</i> , 2012 , 194, 4579-88	3.5	25	
234	Soil Biology of the Rhizobiaceae 1998 , 155-172		25	
233	Inheritance of Host-Controlled Restriction of Nodulation by Bradyrhizobium japonicum Strain USDA 110. <i>Crop Science</i> , 1996 , 36, 1271-1276	2.4	25	
232	Distribution of genetic markers of fecal pollution on a freshwater sandy shoreline in proximity to wastewater effluent. <i>Environmental Science & Environmental Science & Envir</i>	10.3	24	

231	Simultaneous synthesis of temperature-tunable peptide and gold nanoparticle hybrid spheres. <i>Biomacromolecules</i> , 2011 , 12, 2518-23	6.9	24
230	X-ray structure and mutational analysis of the atrazine Chlorohydrolase TrzN. <i>Journal of Biological Chemistry</i> , 2010 , 285, 30606-14	5.4	24
229	Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA. <i>Applied and Environmental Microbiology</i> , 2017 , 83,	4.8	23
228	Influence of Hyphal Inoculum potential on the Competitive Success of Fungi Colonizing Wood. <i>Microbial Ecology</i> , 2015 , 69, 758-67	4.4	23
227	Urea Amendment Decreases Microbial Diversity and Selects for Specific Nitrifying Strains in Eight Contrasting Agricultural Soils. <i>Frontiers in Microbiology</i> , 2018 , 9, 634	5.7	23
226	Transcriptomic basis of genome by genome variation in a legume-rhizobia mutualism. <i>Molecular Ecology</i> , 2017 , 26, 6122-6135	5.7	23
225	Hydroxyatrazine N-ethylaminohydrolase (AtzB): an amidohydrolase superfamily enzyme catalyzing deamination and dechlorination. <i>Journal of Bacteriology</i> , 2007 , 189, 6989-97	3.5	23
224	Soil Stress Factors Influencing Symbiotic Nitrogen Fixation 2005 , 89-112		23
223	Symbiotically defective histidine auxotrophs of Bradyrhizobium japonicum. <i>Archives of Microbiology</i> , 1986 , 144, 334-339	3	23
222	Environmental Contamination in Households of Patients with Recurrent Clostridium difficile Infection. <i>Applied and Environmental Microbiology</i> , 2016 , 82, 2686-2692	4.8	23
221	Occurrence, genetic diversity, and persistence of enterococci in a Lake Superior watershed. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 3067-75	4.8	22
220	High-throughput and quantitative procedure for determining sources of Escherichia coli in waterways by using host-specific DNA marker genes. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 890-6	4.8	22
219	Differences among strains of Bradyrhizobium in fatty acidenthyl ester analysis. <i>Canadian Journal of Microbiology</i> , 1995 , 41, 1038-1042	3.2	22
218	Possible involvement of a megaplasmid in nodulation of soybeans by fast-growing rhizobia from china. <i>Applied and Environmental Microbiology</i> , 1983 , 46, 906-11	4.8	22
217	The establishment of the nuisance cyanobacteria Lyngbya wollei in Lake St. Clair and its potential to harbor fecal indicator bacteria. <i>Journal of Great Lakes Research</i> , 2013 , 39, 560-568	3	21
216	Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan. <i>Water Research</i> , 2011 , 45, 721-31	12.5	21
215	Plasmid localization and organization of melamine degradation genes in Rhodococcus sp. strain Mel. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 1397-403	4.8	21
214	Nodulation and Nitrogen Fixation Efficacy of Rhizobium fredii with Phaseolus vulgaris Genotypes. <i>Applied and Environmental Microbiology</i> , 1988 , 54, 1907-10	4.8	21

213	Breastmilk and NICU surfaces are potential sources of fungi for infant mycobiomes. <i>Fungal Genetics and Biology</i> , 2019 , 128, 29-35	3.9	20
212	Faecal microbiota transplantation is promising but not a panacea. <i>Nature Microbiology</i> , 2016 , 1, 16015	26.6	20
211	Sediments and Soils Act as Reservoirs for Taxonomic and Functional Bacterial Diversity in the Upper Mississippi River. <i>Microbial Ecology</i> , 2016 , 71, 814-24	4.4	20
210	Regional Similarities and Consistent Patterns of Local Variation in Beach Sand Bacterial Communities throughout the Northern Hemisphere. <i>Applied and Environmental Microbiology</i> , 2016 , 82, 2751-2762	4.8	20
209	Characterization of an isoeugenol monooxygenase (Iem) from Pseudomonas nitroreducens Jin1 that transforms isoeugenol to vanillin. <i>Bioscience, Biotechnology and Biochemistry</i> , 2013 , 77, 289-94	2.1	20
208	Contemporary Applications of Fecal Microbiota Transplantation to Treat Intestinal Diseases in Humans. <i>Archives of Medical Research</i> , 2017 , 48, 766-773	6.6	20
207	Genome-scale metabolic network validation of Shewanella oneidensis using transposon insertion frequency analysis. <i>PLoS Computational Biology</i> , 2014 , 10, e1003848	5	20
206	Soil nitrogen transformations under elevated atmospheric COL and Olduring the soybean growing season. <i>Environmental Pollution</i> , 2011 , 159, 401-7	9.3	20
205	High diversity and abundance of antibiotic-resistant Escherichia coli isolated from humans and farm animal hosts in Jeonnam Province, South Korea. <i>Science of the Total Environment</i> , 2010 , 408, 3499-506	10.2	20
204	Insights learned from pBTAi1, a 229-kb accessory plasmid from Bradyrhizobium sp. strain BTAi1 and prevalence of accessory plasmids in other Bradyrhizobium sp. strains. <i>ISME Journal</i> , 2008 , 2, 158-70	11.9	20
203	DNA Hybridization Probe for Use in Determining Restricted Nodulation among Bradyrhizobium japonicum Serocluster 123 Field Isolates. <i>Applied and Environmental Microbiology</i> , 1990 , 56, 1768-74	4.8	20
202	Host-Controlled Restriction of Nodulation by Bradyrhizobium japonicum Strains in Serogroup 110. <i>Applied and Environmental Microbiology</i> , 1995 , 61, 2378-83	4.8	20
201	Influence of Library Composition on SourceTracker Predictions for Community-Based Microbial Source Tracking. <i>Environmental Science & Environmental Sc</i>	10.3	20
200	Dietary Factors in Sulfur Metabolism and Pathogenesis of Ulcerative Colitis. <i>Nutrients</i> , 2019 , 11,	6.7	19
199	A multi-omics based ecological analysis of coastal marine sediments from Gladstone, in Australia's Central Queensland, and Heron Island, a nearby fringing platform reef. <i>Science of the Total Environment</i> , 2017 , 609, 842-853	10.2	19
198	A New Family of Biuret Hydrolases Involved in S-Triazine Ring Metabolism. <i>ACS Catalysis</i> , 2011 , 2011, 1075-1082	13.1	19
197	Characterization of cytochromes c550 and c555 from Bradyrhizobium japonicum: cloning, mutagenesis, and sequencing of the c555 gene (cycC). <i>Journal of Bacteriology</i> , 1991 , 173, 7887-95	3.5	19
196	Restriction of Nodulation by Bradyrhizobium japonicum Is Mediated by Factors Present in the Roots of Glycine max. <i>Applied and Environmental Microbiology</i> , 1995 , 61, 832-6	4.8	19

195	Application of metagenomics to assess microbial communities in water and other environmental matrices. <i>Journal of the Marine Biological Association of the United Kingdom</i> , 2016 , 96, 121-129	1.1	19
194	Antibiotic-induced Disruption of Intestinal Microbiota Contributes to Failure of Vertical Sleeve Gastrectomy. <i>Annals of Surgery</i> , 2019 , 269, 1092-1100	7.8	19
193	Analysis of gut microbiota - An ever changing landscape. <i>Gut Microbes</i> , 2017 , 8, 268-275	8.8	18
192	Denitrifying Bacteria Active in Woodchip Bioreactors at Low-Temperature Conditions. <i>Frontiers in Microbiology</i> , 2019 , 10, 635	5.7	18
191	Seasonal metabolic analysis of marine sediments collected from Moreton Bay in South East Queensland, Australia, using a multi-omics-based approach. <i>Science of the Total Environment</i> , 2018 , 631-632, 1328-1341	10.2	18
190	Quantitative PCR for measuring biomass of decomposer fungi in planta. Fungal Ecology, 2014, 7, 39-46	4.1	18
189	Gene expression profiling of Escherichia coli in response to interactions with the lettuce rhizosphere. <i>Journal of Applied Microbiology</i> , 2012 , 113, 1076-86	4.7	18
188	Mineralization of the Bacillus thuringiensis Cry1Ac endotoxin in soil. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 1025-8	5.7	18
187	Genome analysis of Bradyrhizobium japonicum serocluster 123 field isolates by using field inversion gel electrophoresis. <i>Applied and Environmental Microbiology</i> , 1990 , 56, 1949-53	4.8	18
186	Structure and Diversity of Arsenic Resistant Bacteria in an Old Tin Mine Area of Thailand. <i>Journal of Microbiology and Biotechnology</i> , 2010 , 20, 169-178	3.3	18
185	Herbicide bioremediation: from strains to bacterial communities. <i>Heliyon</i> , 2020 , 6, e05767	3.6	18
184	Intermittent flooding of organic-rich soil promotes the formation of denitrification hot moments and hot spots. <i>Ecosphere</i> , 2019 , 10, e02549	3.1	17
183	Transformation of tetracycline by TetX and its subsequent degradation in a heterologous host. <i>FEMS Microbiology Ecology</i> , 2015 , 91,	4.3	17
182	Transcriptional and functional responses of Escherichia coli O157:H7 growing in the lettuce rhizoplane. <i>Food Microbiology</i> , 2013 , 35, 136-42	6	17
181	Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786(pHG-2) via an engineered metabolic pathway. <i>Applied and Environmental Microbiology</i> , 1994 , 60, 4148-54	4.8	17
180	Genome-Wide Association Analyses in the Model Rhizobium. <i>MSphere</i> , 2018 , 3,	5	17
179	Increased Denitrification Rates Associated with Shifts in Prokaryotic Community Composition Caused by Varying Hydrologic Connectivity. <i>Frontiers in Microbiology</i> , 2017 , 8, 2304	5.7	16
178	Escherichia coli populations in Great Lakes waterfowl exhibit spatial stability and temporal shifting. Applied and Environmental Microbiology, 2009, 75, 1546-51	4.8	16

177	Isoeugenol monooxygenase and its putative regulatory gene are located in the eugenol metabolic gene cluster in Pseudomonas nitroreducens Jin1. <i>Archives of Microbiology</i> , 2010 , 192, 201-9	3	16
176	Sources and Sinks of Escherichia coli in Benthic and Pelagic Fish. <i>Journal of Great Lakes Research</i> , 2008 , 34, 228-234	3	16
175	Influence of short-term changes in dietary sulfur on the relative abundances of intestinal sulfate-reducing bacteria. <i>Gut Microbes</i> , 2019 , 10, 447-457	8.8	15
174	Frequencies of heavy metal resistance are associated with land cover type in the Upper Mississippi River. <i>Science of the Total Environment</i> , 2015 , 511, 461-8	10.2	15
173	Bacterial formation of extracellular U(VI) nanowires. Chemical Communications, 2011, 47, 8076-8	5.8	15
172	Novel psbA1 gene from a naturally occurring atrazine-resistant cyanobacterial isolate. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 1358-66	4.8	15
171	Microbial influence on gene-for-gene interactions in legume-Rhizobium symbioses. <i>Plant and Soil</i> , 1990 , 129, 53-60	4.2	15
170	Lysogeny in Bradyrhizobium japonicum and Its Effect on Soybean Nodulation. <i>Applied and Environmental Microbiology</i> , 1992 , 58, 3360-6	4.8	15
169	Type IV Effector Proteins Involved in the Medicago-Sinorhizobium Symbiosis. <i>Molecular Plant-Microbe Interactions</i> , 2017 , 30, 28-34	3.6	14
168	Geographic isolation of Escherichia coli genotypes in sediments and water of the Seven Mile Creek - A constructed riverine watershed. <i>Science of the Total Environment</i> , 2015 , 538, 78-85	10.2	14
167	Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 195, 110458	7	14
166	Shift of bacterial community structure in two Thai soil series affected by silver nanoparticles using ARISA. <i>World Journal of Microbiology and Biotechnology</i> , 2014 , 30, 2119-24	4.4	14
165	Selection on horizontally transferred and duplicated genes in sinorhizobium (ensifer), the root-nodule symbionts of medicago. <i>Genome Biology and Evolution</i> , 2014 , 6, 1199-209	3.9	14
164	Near-full length sequencing of 16S rDNA and RFLP indicates that Rhizobium etli is the dominant species nodulating Egyptian winter Berseem clover (Trifolium alexandrinum L.). <i>Systematic and Applied Microbiology</i> , 2014 , 37, 121-8	4.2	14
163	Prevalence of season-specific Escherichia coli strains in the Yeongsan River Basin of South Korea. <i>Environmental Microbiology</i> , 2011 , 13, 3103-13	5.2	14
162	Thermostable cyanuric acid hydrolase from Moorella thermoacetica ATCC 39073. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 6986-91	4.8	14
161	Native prairie grasses and microbial community responses to reclamation of taconite iron ore tailing. <i>Canadian Journal of Botany</i> , 1995 , 73, 1645-1654		14
160	Signal Disruption Leads to Changes in Bacterial Community Population. <i>Frontiers in Microbiology</i> , 2019 , 10, 611	5.7	13

159	Enhanced nodulation and nodule development by nolR mutants of Sinorhizobium medicae on specific Medicago host genotypes. <i>Molecular Plant-Microbe Interactions</i> , 2014 , 27, 328-35	3.6	13
158	Influence of elevated atmospheric carbon dioxide on transcriptional responses of Bradyrhizobium japonicum in the soybean rhizoplane. <i>Microbes and Environments</i> , 2013 , 28, 217-27	2.6	13
157	Bioavailability of organoclay formulations of atrazine in soil. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 11857-63	5.7	13
156	Microbial Degradation of s-Triazine Herbicides 2008 , 301-328		13
155	Seasonal and genotypic changes in escherichia coli phylogenetic groups in the Yeongsan River basin of South Korea. <i>PLoS ONE</i> , 2014 , 9, e100585	3.7	13
154	Randomised clinical study: oral aspirin 325 mg daily vs placebo alters gut microbial composition and bacterial taxa associated with colorectal cancer risk. <i>Alimentary Pharmacology and Therapeutics</i> , 2020 , 52, 976-987	6.1	13
153	Association between submerged aquatic vegetation and elevated levels of Escherichia coli and potential bacterial pathogens in freshwater lakes. <i>Science of the Total Environment</i> , 2019 , 657, 319-324	10.2	13
152	Composition, Predicted Functions and Co-occurrence Networks of Rhizobacterial Communities Impacting Flowering Desert Events in the Atacama Desert, Chile. <i>Frontiers in Microbiology</i> , 2020 , 11, 571	5.7	12
151	GST activity and membrane lipid saturation prevents mesotrione-induced cellular damage in Pantoea ananatis. <i>AMB Express</i> , 2016 , 6, 70	4.1	12
150	Microbiota transplant therapy and autism: lessons for the clinic. <i>Expert Review of Gastroenterology and Hepatology</i> , 2019 , 13, 1033-1037	4.2	12
149	E. coli histidine triad nucleotide binding protein 1 (ecHinT) is a catalytic regulator of D-alanine dehydrogenase (DadA) activity in vivo. <i>PLoS ONE</i> , 2011 , 6, e20897	3.7	12
148	Rapid and complete degradation of the herbicide picloram by Lipomyces kononenkoae. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 4878-82	5.7	12
147	The Effects of Turbulence and Carbon Amendments on Nitrate Uptake and Microbial Gene Abundances in Stream Sediment. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 1289-130	o 1 ∙7	11
146	Bacillus megaterium strains derived from water and soil exhibit differential responses to the herbicide mesotrione. <i>PLoS ONE</i> , 2018 , 13, e0196166	3.7	11
145	Photosynthetic Bradyrhizobium sp. strain ORS285 is capable of forming nitrogen-fixing root nodules on soybeans (Glycine max). <i>Applied and Environmental Microbiology</i> , 2013 , 79, 2459-62	4.8	11
144	Competition between introduced Bradyrhizobium japonicum strains and indigenous bradyrhizobia in Minnesota organic farming systems. <i>Symbiosis</i> , 2017 , 73, 155-163	3	11
143	Virulence and biodegradation potential of dynamic microbial communities associated with decaying Cladophora in Great Lakes. <i>Science of the Total Environment</i> , 2017 , 574, 872-880	10.2	11
142	Biodegradation of atrazine by three transgenic grasses and alfalfa expressing a modified bacterial atrazine chlorohydrolase gene. <i>Transgenic Research</i> , 2015 , 24, 475-88	3.3	11

(2018-2015)

141	Predominant populations of indigenous soybean-nodulating Bradyrhizobium japonicum strains obtained from organic farming systems in Minnesota. <i>Journal of Applied Microbiology</i> , 2015 , 118, 1152-	6 4 ·7	11	
140	The Bradyrhizobium japonicum noeD gene: a negatively acting, genotype-specific nodulation gene for soybean. <i>Molecular Plant-Microbe Interactions</i> , 1998 , 11, 476-88	3.6	11	
139	Hyperreiterated DNA regions are conserved among Bradyrhizobium japonicum serocluster 123 strains. <i>Applied and Environmental Microbiology</i> , 1992 , 58, 1878-85	4.8	11	
138	Impact of Atrazine Exposure on the Microbial Community Structure in a Brazilian Tropical Latosol Soil. <i>Microbes and Environments</i> , 2020 , 35,	2.6	11	
137	Arthrobacter sp. strain KU001 isolated from a Thai soil degrades atrazine in the presence of inorganic nitrogen sources. <i>Journal of Microbiology and Biotechnology</i> , 2010 , 20, 602-8	3.3	11	
136	Metabolic Interference of sod gene mutations on catalase activity in Escherichia coli exposed to Gramoxone (paraquat) herbicide. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 139, 89-96	7	10	
135	Phylogenetic Backgrounds and Virulence-Associated Traits of Escherichia coli Isolates from Surface Waters and Diverse Animals in Minnesota and Wisconsin. <i>Applied and Environmental Microbiology</i> , 2017 , 83,	4.8	10	
134	The deposit feeder Capitella teleta has a unique and relatively complex microbiome likely supporting its ability to degrade pollutants. <i>Science of the Total Environment</i> , 2019 , 670, 547-554	10.2	10	
133	Niche Differentiation in the Composition, Predicted Function, and Co-occurrence Networks in Bacterial Communities Associated With Antarctic Vascular Plants. <i>Frontiers in Microbiology</i> , 2020 , 11, 1036	5.7	10	
132	Amino acid substitutions in naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 result in regio- and stereo-specific hydroxylation of flavanone and isoflavanone. <i>Applied Microbiology and Biotechnology</i> , 2013 , 97, 693-704	5.7	10	
131	Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions. <i>Molecular Plant-Microbe Interactions</i> , 2011 , 24, 451-7	3.6	10	
130	Genotypic and phenotypic trends in antibiotic resistant pathogenic Escherichia coli isolated from humans and farm animals in South Korea. <i>Microbes and Environments</i> , 2011 , 26, 198-204	2.6	10	
129	Transcriptional control of the isoeugenol monooxygenase of Pseudomonas nitroreducens Jin1 in Escherichia coli. <i>Bioscience, Biotechnology and Biochemistry</i> , 2012 , 76, 1891-6	2.1	10	
128	A marker-dense physical map of the Bradyrhizobium japonicum genome. <i>Genome Research</i> , 2001 , 11, 1434-40	9.7	10	
127	The Future of Microbial Source Tracking Studies235-277		10	
126	Environmental Sources of Fecal Bacteria93-110		10	
125	Do shared traits create the same fates? Examining the link between morphological type and the biogeography of fungal and bacterial communities. <i>Fungal Ecology</i> , 2020 , 46, 100948	4.1	10	
124	Decay of sewage-associated bacterial communities in fresh and marine environmental waters and sediment. <i>Applied Microbiology and Biotechnology</i> , 2018 , 102, 7159-7170	5.7	9	

123	High-throughput functional screening reveals low frequency of antibiotic resistance genes in DNA recovered from the Upper Mississippi River. <i>Journal of Water and Health</i> , 2015 , 13, 693-703	2.2	9
122	Characterization of a Functional Role of the Bradyrhizobium japonicum Isocitrate Lyase in Desiccation Tolerance. <i>International Journal of Molecular Sciences</i> , 2015 , 16, 16695-709	6.3	9
121	Prevalence of toxin-producing Clostridium botulinum associated with the macroalga Cladophora in three Great Lakes: growth and management. <i>Science of the Total Environment</i> , 2015 , 511, 523-9	10.2	9
120	Relationship between root length density and soil microorganisms in the rhizospheres of white clover and perennial ryegrass. <i>Communications in Soil Science and Plant Analysis</i> , 1997 , 28, 1675-1682	1.5	9
119	Growth of fast- and slow-growing rhizobia on ethanol. <i>Applied and Environmental Microbiology</i> , 1986 , 52, 951-3	4.8	9
118	The Bradyrhizobium japonicum serocluster 123 hyperreiterated DNA region, HRS1, has DNA and amino acid sequence homology to IS1380, an insertion sequence from Acetobacter pasteurianus. <i>Applied and Environmental Microbiology</i> , 1993 , 59, 1656-61	4.8	9
117	Cultivar and phosphorus effects on switchgrass yield and rhizosphere microbial diversity. <i>Applied Microbiology and Biotechnology</i> , 2019 , 103, 1973-1987	5.7	9
116	Impacts of Sampling Design on Estimates of Microbial Community Diversity and Composition in Agricultural Soils. <i>Microbial Ecology</i> , 2019 , 78, 753-763	4.4	8
115	Comparisons of bacterial and archaeal communities in the rumen and a dual-flow continuous culture fermentation system using amplicon sequencing. <i>Journal of Animal Science</i> , 2018 , 96, 1059-1072	0.7	8
114	7-Methylation of Chenodeoxycholic Acid Derivatives Yields a Substantial Increase in TGR5 Receptor Potency. <i>Journal of Medicinal Chemistry</i> , 2019 , 62, 6824-6830	8.3	8
113	Compositional and temporal stability of fecal taxon libraries for use with SourceTracker in sub-tropical catchments. <i>Water Research</i> , 2019 , 165, 114967	12.5	8
112	Measurement and Modeling of Denitrification in Sand-Bed Streams under Various Land Uses. Journal of Environmental Quality, 2014 , 43, 1013-23	3.4	8
111	A Host-Controlled, Serogroup-Specific, Ineffective-Nodulation System in the Bradyrhizobium-Soybean (Glycine max) Symbiosis. <i>Molecular Plant-Microbe Interactions</i> , 1997 , 10, 994-10	009	8
110	Isolation of aBradyrhizobium japonicumserogroup 123 mutant which has an extended host range for nodulation-restricting soybean genotypes. <i>FEMS Microbiology Letters</i> , 1993 , 106, 205-209	2.9	8
109	Fecal Pollution, Public Health, and Microbial Source Tracking1-32		8
108	Modeling Fate and Transport of Fecal Bacteria in Surface Water165-188		8
107	The complete replicons of 16 Ensifer meliloti strains offer insights into intra- and inter-replicon gene transfer, transposon-associated loci, and repeat elements. <i>Microbial Genomics</i> , 2018 , 4,	4.4	8
106	A microfluidic platform for the simultaneous quantification of methanogen populations in anaerobic digestion processes. <i>Environmental Microbiology</i> , 2019 , 21, 1798-1808	5.2	7

105	Role of Rhizobacteria in Phytoremediation of Metal-Impacted Sites 2019 , 299-328		7
104	Notable decomposition products of senescing Lake Michigan Cladophora glomerata. <i>Journal of Great Lakes Research</i> , 2014 , 40, 800-806	3	7
103	Waterfowl abundance does not predict the dominant avian source of beach Escherichia coli. <i>Journal of Environmental Quality</i> , 2011 , 40, 1924-31	3.4	7
102	Synthesis of chalcogenide ternary and quaternary nanotubes through directed compositional alterations of bacterial AsB nanotubes. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10277		7
101	Use of Endogenous Repeated Sequences to Fingerprint Bacterial Genomic DNA 1998 , 399-413		7
100	Rapid Colored-Nodule Assay for Assessing Root Exudate-Enhanced Competitiveness of Bradyrhizobium japonicum. <i>Applied and Environmental Microbiology</i> , 1986 , 52, 847-51	4.8	7
99	Structuring biofilm communities living in pesticide contaminated water. <i>Heliyon</i> , 2020 , 6, e03996	3.6	7
98	Source-Associated Gastroenteritis Risk from Swimming Exposure to Aging Fecal Pathogens. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	7
97	Sequence-enabled community-based microbial source tracking in surface waters using machine learning classification: A review. <i>Journal of Microbiological Methods</i> , 2020 , 177, 106050	2.8	7
96	Gut-sparing treatment of urinary tract infection in patients at high risk of Clostridium difficile infection. <i>Journal of Antimicrobial Chemotherapy</i> , 2017 , 72, 522-528	5.1	6
95	Microscale measurements reveal contrasting effects of photosynthesis and epiphytes on frictional drag on the surfaces of filamentous algae. <i>Freshwater Biology</i> , 2014 , 59, 312-324	3.1	6
94	Assumptions and Limitations Associated with Microbial Source Tracking Methods33-64		6
93	Molecular Subtyping, Source Tracking, and Food Safety93-136		6
92	Water and sediment act as reservoirs for microbial taxa associated with invasive dreissenid mussels. <i>Science of the Total Environment</i> , 2020 , 703, 134915	10.2	6
91	Comparative decay of culturable faecal indicator bacteria, microbial source tracking marker genes, and enteric pathogens in laboratory microcosms that mimic a sub-tropical environment. <i>Science of the Total Environment</i> , 2021 , 751, 141475	10.2	6
90	Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies. <i>Journal of Microbiological Methods</i> , 2018 , 154, 14-18	2.8	6
89	The Diet and Gut Microbial Communities of Two Closely Related Combtooth Blennies, Chasmodes saburraeand Scartella cristata. <i>Copeia</i> , 2017 , 105, 249-256	1.1	5
88	Environmental and Adaptive Changes Necessitate a Paradigm Shift for Indicators of Fecal Contamination. <i>Microbiology Spectrum</i> , 2020 , 8,	8.9	5

87	Root and Stem Nodule Bacteria of Legumes 2013 , 401-425		5
86	Dynamic changes in the population structure of Escherichia coli in the Yeongsan River basin of South Korea. <i>FEMS Microbiology Ecology</i> , 2015 , 91,	4.3	5
85	Automated Robotic Assay of Phosphomonoesterase Activity in Soils. <i>Soil Science Society of America Journal</i> , 2006 , 70, 378-381	2.5	5
84	Animals and Humans as Sources of Fecal Indicator Bacteria67-91		5
83	Rhizobacteria from 'flowering desert' events contribute to the mitigation of water scarcity stress during tomato seedling germination and growth. <i>Scientific Reports</i> , 2021 , 11, 13745	4.9	5
82	Influence of Physicochemical Factors on Bacterial Communities Along the Lower Mekong River Assessed by Illumina Next-Generation Sequencing. <i>Water, Air, and Soil Pollution</i> , 2018 , 229, 1	2.6	5
81	Biodegradation of azo dyes by bacterial or fungal consortium and identification of the biodegradation products. <i>Egyptian Journal of Aquatic Research</i> , 2021 , 47, 269-276	3.1	5
80	Biological Nitrogen Fixation: A Key Process for the Response of Grassland Ecosystems to Elevated Atmospheric [CO2]. <i>Ecological Studies</i> , 2006 , 325-336	1.1	5
79	Response of dry bean (Phaseolus vulgaris L.) to inoculation with indigenous and commercial Rhizobium strains under organic farming systems in Minnesota. <i>Symbiosis</i> , 2019 , 78, 125-134	3	4
78	An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by (syn. Bradyrhizobium japonicum) USDA110. <i>Applied and Environmental Microbiology</i> , 2019 , 85,	4.8	4
77	An Alternative Approach to "Identification of Unknowns": Designing a Protocol to Verify the Identities of Nitrogen Fixing Bacteria. <i>Journal of Microbiology and Biology Education</i> , 2015 , 16, 247-53	1.3	4
76	Draft Genome Sequence of Sphingobacterium sp. Strain PM2-P1-29, a Tetracycline-Degrading TetX-Expressing Aerobic Bacterium Isolated from Agricultural Soil. <i>Genome Announcements</i> , 2014 , 2,		4
75	Phylogenetic and phenotypic analyses of arsenic-reducing bacteria isolated from an old tin mine area in Thailand. <i>World Journal of Microbiology and Biotechnology</i> , 2012 , 28, 2287-92	4.4	4
74	Characterization of a self-sufficient trans-anethole oxygenase from Pseudomonas putida JYR-1. <i>PLoS ONE</i> , 2013 , 8, e73350	3.7	4
73	Transcriptional and Physiological Responses of Bradyrhizobium japonicum to Desiccation-Induced Stress. <i>Journal of Bacteriology</i> , 2007 , 189, 9150-9150	3.5	4
72	Influence of Cry1Ac toxin on mineralization and bioavailability of glyphosate in soil. <i>Journal of Agricultural and Food Chemistry</i> , 2006 , 54, 164-9	5.7	4
71	Arsenic Availability from Chromated Copper Arsenate (CCA) Treated Wood. <i>Journal of Environmental Quality</i> , 2004 , 33, 173	3.4	4
70	Physical and Biological Factors Influencing Environmental Sources of Fecal Indicator Bacteria in Surface Water111-134		4

(2020-2021)

69	Engineering Multigenerational Host-Modulated Microbiota against Soilborne Pathogens in Response to Global Climate Change. <i>Biology</i> , 2021 , 10,	4.9	4
68	Structure and diversity of arsenic resistant bacteria in an old tin mine area of Thailand. <i>Journal of Microbiology and Biotechnology</i> , 2010 , 20, 169-78	3.3	4
67	Factors influencing the Salmonella internalization into seedpods and whole plants of Arachis hypogaea (L.). <i>Food Microbiology</i> , 2017 , 66, 184-189	6	3
66	Site-specific distribution and competitive ability of indigenous bean-nodulating rhizobia isolated from organic fields in Minnesota. <i>Journal of Biotechnology</i> , 2015 , 214, 158-68	3.7	3
65	CLOUD: a non-parametric detection test for microbiome outliers. <i>Microbiome</i> , 2018 , 6, 137	16.6	3
64	Influence of heavy metals on rhizosphere microbial communities of Siam weed (Chromolaena odorata (L.)) using a 16S rRNA gene amplicon sequencing approach. <i>Agriculture and Natural Resources</i> , 2017 , 51, 137-141	1.3	3
63	A model laboratory system to study the synergistic interaction and growth of environmental Escherichia coli with macrophytic green algae. <i>Journal of Great Lakes Research</i> , 2012 , 38, 390-395	3	3
62	Diversity and evolution of micro-organisms and pathways for the degradation of environmental contaminants: a case study with the s-triazine herbicides205-225		3
61	Laser imaging for rapid Microbial Source Tracking. <i>International Journal of Computational Biology and Drug Design</i> , 2010 , 3, 177-86	0.4	3
60	Root and Stem Nodule Bacteria of Legumes 2006 , 818-841		3
59	The argRB of Escherichia coli is rare in isolates obtained from natural sources. <i>Gene</i> , 2006 , 376, 240-7	3.8	3
58	Genetics of Atrazine and s-Triazine Degradation by Psedomonas sp. Strain ADP and Other Bacteria. <i>ACS Symposium Series</i> , 2000 , 268-282	0.4	3
57	Molecular Detection and Characterization Tools65-91		3
56	The Fecal Environment, The Gut1-21		3
55	Taxonomy, Phylogeny, and Physiology of Fecal Indicator Bacteria23-38		3
54	Microbial Source Tracking189-216		3
53	Bacterial community composition in agricultural soils under long-term organic and conventional Imanagement 2020 , 3, e20063		3
52	Peri-operative antibiotics acutely and significantly impact intestinal microbiota following bariatric surgery. <i>Scientific Reports</i> , 2020 , 10, 20340	4.9	3

51	Impacts of cover crops and nitrogen fertilization on agricultural soil fungal and bacterial communities. <i>Plant and Soil</i> , 2021 , 466, 139-150	4.2	3
50	Influence of Environmental Stressors on the Microbiota of Zebra Mussels (Dreissena polymorpha). <i>Microbial Ecology</i> , 2021 , 81, 1042-1053	4.4	3
49	Lower endoscopic delivery of freeze-dried intestinal microbiota results in more rapid and efficient engraftment than oral administration. <i>Scientific Reports</i> , 2021 , 11, 4519	4.9	3
48	Spatial and temporal characterization of epiphytic microbial communities associated with Eurasian watermilfoil: a highly invasive macrophyte in North America. <i>FEMS Microbiology Ecology</i> , 2018 , 94,	4.3	3
47	A Combined Digital PCR and Next Generation DNA-Sequencing Based Approach for Tracking Nearshore Pollutant Dynamics Along the Southwest United States/Mexico Border. <i>Frontiers in Microbiology</i> , 2021 , 12, 674214	5.7	3
46	Rapid method using two microbial enzymes for detection of L-abrine in food as a marker for the toxic protein abrin. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 1610-5	4.8	2
45	Lack of evidence for the role of gut microbiota in PAH biodegradation by the polychaete Capitella teleta. <i>Science of the Total Environment</i> , 2020 , 725, 138356	10.2	2
44	Widespread occurrence of Sinorhizobium meliloti strains with a type IV secretion system. <i>Symbiosis</i> , 2018 , 75, 81-91	3	2
43	Molecular Basis of a Bacterial Consortium: Interspecies Catabolism of Atrazine. <i>Applied and Environmental Microbiology</i> , 2000 , 66, 1252-1252	4.8	2
42	Composition and Potential Functions of Rhizobacterial Communities in a Pioneer Plant from Andean Altiplano. <i>Diversity</i> , 2022 , 14, 14	2.5	2
41	Identification of a Brevibacterium marker gene specific to poultry litter and development of a quantitative PCR assay. <i>Journal of Applied Microbiology</i> , 2009 , 109, 334	4.7	2
40	Classical and Molecular Methods to Measure Fecal Bacteria241-273		2
39	Gene-for-gene interaction in the legume-Rhizobium symbiosis 1991 , 163-171		2
38	Methanogen Abundance Thresholds Capable of Differentiating In Vitro Methane Production in Human Stool Samples. <i>Digestive Diseases and Sciences</i> , 2021 , 66, 3822-3830	4	2
37	Draft Genome Sequences of Four Novel Thermal- and Alkaline-Tolerant Egyptian Rhizobium Strains Nodulating Berseem Clover. <i>Genome Announcements</i> , 2016 , 4,		2
36	Bioturbation by the marine polychaete Capitella teleta alters the sediment microbial community by ingestion and defecation of sediment particles. <i>Science of the Total Environment</i> , 2021 , 752, 142239	10.2	2
35	Bioaugmentation with As-transforming bacteria improves arsenic availability and uptake by the hyperaccumulator plant (L). <i>International Journal of Phytoremediation</i> , 2021 , 1-9	3.9	2
34	Inoculation of Mimosa Pudica with Paraburkholderia phymatum Results in Changes to the Rhizoplane Microbial Community Structure. <i>Microbes and Environments</i> , 2021 , 36,	2.6	2

33	Halophytes increase rhizosphere microbial diversity, network complexity and function in inland saline ecosystem <i>Science of the Total Environment</i> , 2022 , 154944	10.2	2
32	Complete Genome Sequence of the Triclosan- and Multidrug-Resistant Pseudomonas aeruginosa Strain B10W Isolated from Municipal Wastewater. <i>Genome Announcements</i> , 2017 , 5,		1
31	Letter to the Editor. Clinical Infectious Diseases, 2019, 69, 2232-2233	11.6	1
30	Transcriptional Responses of Escherichia coli K-12 and O157:H7 Associated with Lettuce Leaves. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 3783-3783	4.8	1
29	DNA Profiling in Ecology 2010 ,		1
28	Prevalence and Fate of Gut-Associated Human Pathogens in the Environment217-240		1
27	Impacts of Fecal Bacteria on Human and Animal Health Pathogens and Virulence Genes 135-164		1
26	Convenient Protocol for Production and Purification of Spores for Germination Studies. <i>STAR Protocols</i> , 2020 , 1, 100071	1.4	1
25	Comparative genomic analysis of diverse rhizobia and effective nitrogen-fixing clover-nodulating Rhizobium strains adapted to Egyptian dry ecosystems. <i>Symbiosis</i> , 2021 , 84, 39-47	3	1
24	Bacterial biogeography influenced by shelf-basin exchange in the Arctic surface sediment at the Chukchi Borderland. <i>Environmental Microbiology</i> , 2016 , 18, 668-78	5.2	1
23	Influence of seasonality on the aerosol microbiome of the Amazon rainforest. <i>Science of the Total Environment</i> , 2021 , 760, 144092	10.2	1
22	Composition and predicted functions of the bacterial community in spouting pool sediments from the El Tatio Geyser field in Chile. <i>Archives of Microbiology</i> , 2021 , 203, 389-397	3	1
21	Structural modifications that increase gut restriction of bile acid derivatives. <i>RSC Medicinal Chemistry</i> , 2021 , 12, 394-405	3.5	1
20	Microbial source tracking using metagenomics and other new technologies. <i>Journal of Microbiology</i> , 2021 , 59, 259-269	3	1
19	Complete Genome Sequence of Sinorhizobium meliloti Bacteriophage HMSP1-Susan. <i>Genome Announcements</i> , 2018 , 6,		1
18	Temperature alters dicyandiamide (DCD) efficacy for multiple reactive nitrogen species in urea-amended soils: Experiments and modeling. <i>Soil Biology and Biochemistry</i> , 2021 , 160, 108341	7.5	1
17	Statistical Issues in Microbial Source Identification 181-210		0
16	Measurement and Modeling of Denitrification in Sand-Bed Streams under Various Land Uses 2014 , 43, 1013		Ο

15	Erosion and deposition divergently affect the structure of soil bacterial communities and functionality. <i>Catena</i> , 2022 , 209, 105805	5.8	O
14	Microbial influence on gene-for-gene interactions in legume-Rhizobium symbioses 1991 , 173-180		O
13	Gut Microbiota Associated With Different Sea Lamprey () Life Stages. <i>Frontiers in Microbiology</i> , 2021 , 12, 706683	5.7	О
12	Differential hydrogen sulfide production by a human cohort in response to animal- and plant-based diet interventions <i>Clinical Nutrition</i> , 2022 , 41, 1153-1162	5.9	O
11	Legume™icrobe Symbioses 2012 , 73-88		
10	Agricultural microbes genome 2. Comparative and Functional Genomics, 2001, 2, 10-3		
9	Genetics of Atrazine Degradation in Pseudomonas sp. Strain ADP. ACS Symposium Series, 1998, 88-94	0.4	
8	Probable role of Cutibacterium acnes in the gut of the polychaete Capitella teleta. <i>Science of the Total Environment</i> , 2021 , 809, 151127	10.2	
7	Host-Controlled Restriction of Nodulation by Bradyrhizobium Japonicum Strain USDA 110 and Characterization of a Gene Regulating Nodulation 1997 , 137-141		
6	Atrazine Chlorohydrolase from Pseudomonas sp. Strain ADP: Gene Sequence, Enzyme Purification, and Protein Characterization. <i>Journal of Bacteriology</i> , 1999 , 181, 695-695	3.5	
5	Fecal Bacteria and Foods275-293		
4	Shellfish and Microbial Source Tracking137-179		
3	The Gut Microbiota: Ecology and Function39-65		
2	Conclusions and Future Use of Fecal Indicator Bacteria for Monitoring Water Quality and Protecting Human Health295-302		
1	A hybrid DNA sequencing approach is needed to properly link genotype to phenotype in multi-drug resistant bacteria. <i>Environmental Pollution</i> , 2021 , 289, 117856	9.3	