
Danil N Dybtsev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1810719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intense multi-colored luminescence in a series of rare-earth metal–organic frameworks with aliphatic linkers. Dalton Transactions, 2021, 50, 11899-11908.	1.6	11
2	Isomeric Scandium–Organic Frameworks with High Hydrolytic Stability and Selective Adsorption of Acetylene. Inorganic Chemistry, 2021, 60, 2996-3005.	1.9	21
3	3D Metal–Organic Frameworks Based on Co(II) and Bithiophendicarboxylate: Synthesis, Crystal Structures, Gas Adsorption, and Magnetic Properties. Molecules, 2021, 26, 1269.	1.7	15
4	Metal–Organic Frameworks for Highly Selective Separation of Xylene Isomers and Single-Crystal X-ray Study of Aromatic Guest–Host Inclusion Compounds. ACS Applied Materials & Interfaces, 2021, 13, 14768-14777.	4.0	27
5	Asymmetric catalysis using metal-organic frameworks. Coordination Chemistry Reviews, 2021, 437, 213845.	9.5	80
6	Cinnamal Sensing and Luminescence Color Tuning in a Series of Rare-Earth Metalâ^'Organic Frameworks with Trans-1,4-cyclohexanedicarboxylate. Molecules, 2021, 26, 5145.	1.7	10
7	Hydrocarbon adsorption in a series of mesoporous metal-organic frameworks. Microporous and Mesoporous Materials, 2021, 328, 111477.	2.2	10
8	Synthesis, structural diversity, luminescent properties and antibacterial effects of cadmium(II) and silver(I) coordination compounds with bis(1,2,3-benzotriazol-1-yl)alkanes. Polyhedron, 2020, 177, 114330.	1.0	15
9	Structural Dynamics and Adsorption Properties of the Breathing Microporous Aliphatic Metal–Organic Framework. Inorganic Chemistry, 2020, 59, 15724-15732.	1.9	18
10	A Series of Mesoporous Metalâ€Organic Frameworks with Tunable Windows Sizes and Exceptionally High Ethane over Ethylene Adsorption Selectivity. Angewandte Chemie - International Edition, 2020, 59, 20561-20567.	7.2	90
11	A Series of Mesoporous Metalâ€Organic Frameworks with Tunable Windows Sizes and Exceptionally High Ethane over Ethylene Adsorption Selectivity. Angewandte Chemie, 2020, 132, 20742-20748.	1.6	21
12	Topological polymorphism and temperature-driven topotactic transitions of metal–organic coordination polymers. CrystEngComm, 2020, 22, 6295-6301.	1.3	14
13	Exceptionally effective benzene/cyclohexane separation using a nitro-decorated metal–organic framework. Chemical Communications, 2020, 56, 8241-8244.	2.2	48
14	Transition Metal Coordination Polymers with Trans-1,4-Cyclohexanedicarboxylate: Acidity-Controlled Synthesis, Structures and Properties. Materials, 2020, 13, 486.	1.3	8
15	A Selenophene-Incorporated Metal–Organic Framework for Enhanced CO2 Uptake and Adsorption Selectivity. Molecules, 2020, 25, 4396.	1.7	14
16	Tuning the Molecular and Cationic Affinity in a Series of Multifunctional Metal–Organic Frameworks Based on Dodecanuclear Zn(II) Carboxylate Wheels. Journal of the American Chemical Society, 2019, 141, 17260-17269.	6.6	83
17	Understanding Hysteresis in Carbon Dioxide Sorption in Porous Metal–Organic Frameworks. Inorganic Chemistry, 2019, 58, 6811-6820.	1.9	19
18	Chiral MOF incorporating chiral guests: Structural studies and enantiomer-dependent luminescent properties. Polyhedron, 2019, 162, 311-315.	1.0	13

#	Article	IF	CITATIONS
19	Rational synthesis and dimensionality tuning of MOFs from preorganized heterometallic molecular complexes. Dalton Transactions, 2019, 48, 3676-3686.	1.6	28
20	Exploring the multifunctionality in metal–organic framework materials: how do the stilbenedicarboxylate and imidazolyl ligands tune the characteristics of coordination polymers?. New Journal of Chemistry, 2018, 42, 6408-6415.	1.4	21
21	Enhancement of CO ₂ Uptake and Selectivity in a Metal–Organic Framework by the Incorporation of Thiophene Functionality. Inorganic Chemistry, 2018, 57, 5074-5082.	1.9	50
22	Luminescent detection by coordination polymers derived from a pre-organized heterometallic carboxylic building unit. Polyhedron, 2018, 145, 147-153.	1.0	23
23	Synthesis and Luminescence Properties of New Metal-Organic Frameworks Based on Zinc(II) Ions and 2,5-Thiophendicarboxylate Ligands. Crystals, 2018, 8, 7.	1.0	9
24	Thermal (kinetic) stability of inclusion compounds on the basis of porous metal–organic frameworks. Journal of Thermal Analysis and Calorimetry, 2017, 127, 779-787.	2.0	4
25	A Cryptand Metal–Organic Framework as a Platform for the Selective Uptake and Detection of Group I Metal Cations. Chemistry - A European Journal, 2017, 23, 2286-2289.	1.7	18
26	Materials with high proton conductivity above 200°C based on a nanoporous metal–organic framework and non-aqueous ionic media. RSC Advances, 2017, 7, 403-407.	1.7	10
27	Rational Synthesis and Investigation of Porous Metal–Organic Framework Materials from a Preorganized Heterometallic Carboxylate Building Block. Inorganic Chemistry, 2017, 56, 1599-1608.	1.9	63
28	Cage amines in the metal–organic frameworks chemistry. Pure and Applied Chemistry, 2017, 89, 1049-1064.	0.9	12
29	Some basic correlations in the thermal (kinetic) stability of inclusion compounds on the basis of microporous metal–organic frameworks. Journal of Thermal Analysis and Calorimetry, 2017, 130, 335-342.	2.0	3
30	Halochromic coordination polymers based on a triarylmethane dye for reversible detection of acids. Dalton Transactions, 2017, 46, 465-470.	1.6	9
31	Pre-synthesized secondary building units in the rational synthesis of porous coordination polymers. Mendeleev Communications, 2017, 27, 321-331.	0.6	43
32	Phase transitions in a metal–organic coordination polymer: [Zn2(C8H4O4)2(C6H12N2)] with guest molecules. Thermal effects and molecular mobility. Phase Transitions, 2017, 90, 628-636.	0.6	5
33	Synthesis, Crystal Structure, and Luminescent Properties of New Zinc(II) and Cadmium(II) Metal-Organic Frameworks Based on Flexible Bis(imidazol-1-yl)alkane Ligands. Crystals, 2016, 6, 132.	1.0	22
34	Porous coordination polymers based on carboxylate complexes of 3d metals. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2016, 42, 557-573.	0.3	23
35	Synthesis, crystal structure, thermal stability, and luminescent properties of lithium trimesate coordination polymer. Russian Chemical Bulletin, 2015, 64, 2903-2907.	0.4	2
36	Synthesis and characterization of chiral copper(ii) coordination polymers with 4,4´-bipyridine and lactic acid derivatives. Russian Chemical Bulletin, 2015, 64, 2908-2913.	0.4	2

#	Article	IF	CITATIONS
37	Synthesis, structure, and luminescent properties of layered coordination polymer based on cadmium(II) 2,5-furandicarboxylate. Russian Chemical Bulletin, 2015, 64, 613-617.	0.4	2
38	Metal-Cation-Independent Dynamics of Phenylene Ring in Microporous MOFs: A ² H Solid-State NMR Study. Journal of Physical Chemistry C, 2015, 119, 28038-28045.	1.5	36
39	Thermal decomposition of inclusion compounds on the base of the metal–organic framework [Zn2(bdc)2(dabco)]. Journal of Thermal Analysis and Calorimetry, 2015, 121, 491-497.	2.0	12
40	Rigid 1D Coordination Polymers with Tunable Metal Cation and Chiral Pendant Moieties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 590-595.	0.6	6
41	Fast Interchange of Coordinated and Guest Dimethylformamide Molecules in the Zinc(II) Lactate Terephthalate Metal–Organic Framework. Journal of Physical Chemistry C, 2015, 119, 24769-24773.	1.5	3
42	Supramolecular interactions in double-chain coordination polymers based on copper(I) cations with chiral linkers. Journal of Structural Chemistry, 2014, 55, 1442-1447.	0.3	3
43	Microporous coordination polymer [Zn4(dmf)(ur)2(ndc)4] as a heterogeneous catalyst for the Knoevenagel reaction. Russian Chemical Bulletin, 2014, 63, 2363-2368.	0.4	5
44	Synthesis of polypyrrole intercalated into channels of nanoporous metal-organic coordination polymer. Russian Journal of Organic Chemistry, 2014, 50, 510-512.	0.3	0
45	Syntheses and Structural Characterization of Lithium Carboxylate Frameworks and Guest-Dependent Photoluminescence Study. Crystal Growth and Design, 2014, 14, 4355-4363.	1.4	29
46	High-pressure hydrogen storage on modified MIL-101 metal-organic framework. International Journal of Energy Research, 2014, 38, 1562-1570.	2.2	25
47	High Proton Conductivity and Spectroscopic Investigations of Metal–Organic Framework Materials Impregnated by Strong Acids. ACS Applied Materials & Interfaces, 2014, 6, 5161-5167.	4.0	92
48	Homochiral Cu(II) and Ni(II) malates with tunable structural features. Journal of Solid State Chemistry, 2014, 210, 125-129.	1.4	29
49	Synthesis and characterization of expected and unexpected topologies of homochiral porous metal(II) malate frameworks. Inorganica Chimica Acta, 2013, 394, 367-372.	1.2	24
50	Hierarchical Guest Exchange and Step-by-Step Activation of a Biporous Coordination Framework. Inorganic Chemistry, 2013, 52, 9702-9704.	1.9	15
51	Synthesis and gas sorption properties of halogen-doped mesoporous chromium(iii) terephthalate. Russian Chemical Bulletin, 2013, 62, 157-162.	0.4	8
52	Synthesis and structure of chiral coordination polymers of Coll, Cull, and Mgll saccharates. Russian Chemical Bulletin, 2013, 62, 716-721.	0.4	4
53	Synthesis, structure, and properties of a new layered coordination polymer based on zinc(II) carboxylate. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2013, 39, 549-552.	0.3	9
54	Synthesis, crystal structure, and luminescence properties of coordination polymers based on cadmium isonicotinates. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2013, 39, 321-327.	0.3	5

#	Article	IF	CITATIONS
55	Porous carbon materials with a controllable surface area synthesized from metal–organic frameworks. Chemical Communications, 2012, 48, 7447.	2.2	191
56	Enantioselective sorption of alcohols in a homochiral metal–organic framework. Chemical Communications, 2012, 48, 513-515.	2.2	102
57	Imparting High Proton Conductivity to a Metal–Organic Framework Material by Controlled Acid Impregnation. Journal of the American Chemical Society, 2012, 134, 15640-15643.	6.6	438
58	Structure of a framework coordination polymer Zn2(dmf)(H2O)(atc)]·0.75DMF·0.5H2O. Journal of Structural Chemistry, 2012, 53, 408-412.	0.3	1
59	Benzene sorption by a microporous coordination polymer based on a zinc carboxylate. Russian Journal of Inorganic Chemistry, 2012, 57, 717-721.	0.3	1
60	Quantum Rotations and Chiral Polarization of Qubit Prototype Molecules in a Highly Porous Metal–Organic Framework: ¹ H NMR <i>T</i> ₁ Study. Journal of Physical Chemistry C, 2011, 115, 20460-20465.	1.5	31
61	Homochiral porous metal-organic coordination polymers: synthesis, structure and functional properties. Russian Chemical Reviews, 2011, 80, 1009-1034.	2.5	46
62	Synthesis and structure of homochiral polymeric praseodymium tartrate. Russian Chemical Bulletin, 2011, 60, 2425-2428.	0.4	5
63	Synthesis of Phase-Pure Interpenetrated MOF-5 and Its Gas Sorption Properties. Inorganic Chemistry, 2011, 50, 3691-3696.	1.9	114
64	Microporous sensor: gas sorption, guest exchange and guest-dependant luminescence of metal–organic framework. Dalton Transactions, 2011, 40, 2196-2203.	1.6	63
65	Influence of MILâ€101 Doping by Ionic Clusters on Hydrogen Storage Performance up to 1900 Bar. Chemistry - an Asian Journal, 2011, 6, 1854-1859.	1.7	23
66	Synthesis, structure and magnetic behavior of new 1D metal–organic coordination polymer with Fe3O core. Inorganica Chimica Acta, 2011, 365, 513-516.	1.2	10
67	Synthesis, crystal structures, luminescent and thermal properties of two new metal–organic coordination polymers based on zinc(ii) carboxylates. New Journal of Chemistry, 2010, 34, 2445.	1.4	34
68	Removal of nitrogen compounds from liquid hydrocarbon streams by selective sorption on metal-organic framework MIL-101. Mendeleev Communications, 2010, 20, 57-58.	0.6	58
69	Porous homo- and heterochiral cobalt(II) aspartates with high thermal stability of the metal-organic framework. Russian Chemical Bulletin, 2010, 59, 733-740.	0.4	18
70	Luminescence properties of mesoporous chromium(III) terephthalate and inclusion compounds of cluster complexes. Russian Chemical Bulletin, 2010, 59, 741-744.	0.4	16
71	Modular, Homochiral, Porous Coordination Polymers: Rational Design, Enantioselective Guest Exchange Sorption and Ab Initio Calculations of Host–Guest Interactions. Chemistry - A European Journal, 2010, 16, 10348-10356.	1.7	67
72	Influence of [Mo ₆ Br ₈ F ₆] ^{2â^'} Cluster Unit Inclusion within the Mesoporous Solid MIL-101 on Hydrogen Storage Performance. Langmuir, 2010, 26, 11283-11290.	1.6	59

#	Article	IF	CITATIONS
73	Reversible sorption of hydrogen on the novel hybrid material based on mesoporous chromium(iii) terephthalate with included rhenium clusters. Russian Chemical Bulletin, 2009, 58, 1623-1626.	0.4	9
74	Copper(II) camphorates with tunable pore size in metal-organic frameworks. Russian Chemical Bulletin, 2009, 58, 2246-2249.	0.4	12
75	1H NMR refinement of the structure of the guest sublattice and molecular dynamics in the ultrathin channels of [Zn2(C8H4O4)2(C6H12N2)]·n(H3C)2NCHO. Journal of Structural Chemistry, 2009, 50, 421-428.	0.3	13
76	Supramolecular interactions and structural transformations in the metal-organic sorbent-acetone nanoreactor system. Journal of Structural Chemistry, 2009, 50, 887-894.	0.3	8
77	Homogeneous and heterogeneous catalytic oxidation of sulfides by H2O2 over zinc(ii) compounds. Dalton Transactions, 2009, , 10481.	1.6	24
78	Methane Sorption and Structural Characterization of the Sorption Sites in Zn ₂ (bdc) ₂ (dabco) by Single Crystal Xâ€ray Crystallography. Chemistry - an Asian Journal, 2009, 4, 886-891.	1.7	65
79	A chiral cobaltous complex with acetone S-1,1′-binaphtyl-2,2′-diimine. Journal of Structural Chemistry, 2008, 49, 1132-1136.	0.3	0
80	Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates. Journal of Catalysis, 2008, 257, 315-323.	3.1	357
81	Dynamic Pseudo Jahnâ^'Teller Effect and the Phase Transition Induced by Absorption of Molecules in Metalâ^'Organic Nanotube Framework. Journal of Physical Chemistry C, 2008, 112, 5074-5077.	1.5	14
82	Isoreticular Homochiral Porous Metalâ^'Organic Structures with Tunable Pore Sizes. Inorganic Chemistry, 2007, 46, 6843-6845.	1.9	151
83	Enantioselective Chromatographic Resolution and One-Pot Synthesis of Enantiomerically Pure Sulfoxides over a Homochiral Znâ~Organic Framework. Journal of the American Chemical Society, 2007, 129, 12958-12959.	6.6	246
84	Design of scaffold-like metal-organic coordination polymers based on dinuclear zinc(II) carboxylate complexes. Russian Chemical Bulletin, 2007, 56, 225-230.	0.4	6
85	Synthesis, structure, and magnetic properties of the cobalt(II) 1,3,5-benzenetricarboxylate layered coordination polymer. Russian Chemical Bulletin, 2007, 56, 1782-1786.	0.4	8
86	A Homochiral Metal–Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity. Angewandte Chemie - International Edition, 2006, 45, 916-920.	7.2	620
87	Synthesis, X-ray Crystal Structures, and Gas Sorption Properties of Pillared Square Grid Nets Based on Paddle-Wheel Motifs: Implications for Hydrogen Storage in Porous Materials. Chemistry - A European Journal, 2005, 11, 3521-3529.	1.7	827
88	Metal–Organic Replica of Fluorite Built with an Eight-Connecting Tetranuclear Cadmium Cluster and a Tetrahedral Four-Connecting Ligand. Angewandte Chemie - International Edition, 2004, 43, 971-974.	7.2	241
89	Rigid and Flexible: A Highly Porous Metal–Organic Framework with Unusual Guest-Dependent Dynamic Behavior. Angewandte Chemie - International Edition, 2004, 43, 5033-5036.	7.2	1,094
90	Microporous Manganese Formate:Â A Simple Metalâ~'Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties. Journal of the American Chemical Society, 2004, 126, 32-33.	6.6	929

#	Article	IF	CITATIONS
91	Three-dimensional metal–organic framework with (3,4)-connected net, synthesized from an ionic liquid medium. Chemical Communications, 2004, , 1594-1595.	2.2	223
92	Title is missing!. Russian Chemical Bulletin, 2003, 52, 1041-1060.	0.4	75
93	Preparation and Properties of the Aqua Ions [W4S4(H2O)12]n+(n= 5, 6) and Crystal Structure of (Me2NH2)6[W4S4(NCS)12]·0.5H2O#. Inorganic Chemistry, 2002, 41, 1136-1139.	1.9	13
94	Formation (and properties) of palladium derivatives of [Mo3Q4(H2O)9]4+: absence of similar derivatives of [W3Q4(H2O)9]4+ (Q = S, Se). Dalton Transactions RSC, 2002, , 138-143.	2.3	10
95	Supramolecular assemblies of [Mo3Se4Clx(H2O)9â^'x](4â^'x)+ with cucurbituril; complementarity control through the variation of x. Inorganica Chimica Acta, 2002, 331, 31-38.	1.2	25
96	Title is missing!. Russian Chemical Bulletin, 2002, 51, 1800-1805.	0.4	2
97	Phosphorous Acid and Arsenious Acid as Ligands. Inorganic Chemistry, 2001, 40, 4816-4817.	1.9	51
98	Title is missing!. Russian Chemical Bulletin, 2001, 50, 1144-1147.	0.4	7
99	Title is missing!. Journal of Structural Chemistry, 2001, 42, 319-321.	0.3	6
100	Metal Incorporation into and Dimerization of M3E4 Clusters (M=Mo, W; E=S, Se) in Supramolecular Assemblies with Cucurbituril: A Molecular Model of Intercalation. Angewandte Chemie - International Edition, 2000, 39, 1659-1661.	7.2	53
101	A supramolecular approach to the crystallization of chalcogenido bridged cluster aqua ions: synthesis and structure of a cucurbituril adduct of the di-1¼-disulfido Nb(IV)2 aqua ion [Nb2(1¼-S2)2(H2O)8]4+. Inorganica Chimica Acta, 2000, 304, 301-304.	1.2	16
102	Unexpected guest-controlled formation of two-layered structure in supramolecular adduct of [W3S4(H2O)9]4+ and cucurbituril. Inorganic Chemistry Communication, 2000, 3, 345-349.	1.8	24
103	Supramolecular Assemblies Based on Cucurbituril Adducts of Hydrogen-Bonded Molybdenum and Tungsten Incomplete Cuboidal Aqua Complexes. Inorganic Chemistry, 2000, 39, 2227-2230.	1.9	57
104	Preparation, Structure, and Reactivity of Heterometallic Sn-Containing Single- and Double-Cube Derivatives of [Mo3Se4(H2O)9]4+and [W3Se4(H2O)9]4+. Inorganic Chemistry, 1998, 37, 2995-3001.	1.9	36
105	Electrical Conductivity of Nanodimensional Polyaniline Particles in Nanoporous Dielectric Matrix of MIL-101. Advanced Materials Research, 0, 699, 238-244.	0.3	0
106	Comparison of Current-Voltage Characteristics of Bulk Polyaniline and Nano Dimensional Polyaniline Particles in Nanoporous Dielectric Matrix of MIL-101. Advanced Materials Research, 0, 711, 8-13.	0.3	0