Claudia Steinem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1810670/publications.pdf

Version: 2024-02-01

190 papers 8,268 citations

46918 47 h-index 84 g-index

209 all docs

209 docs citations

209 times ranked 8110 citing authors

#	Article	IF	CITATIONS
1	Piezoelectric Mass-Sensing Devices as Biosensors—An Alternative to Optical Biosensors?. Angewandte Chemie - International Edition, 2000, 39, 4004-4032.	7.2	617
2	Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature, 2007, 450, 670-675.	13.7	538
3	Macroporous p-Type Silicon Fabryâ^'Perot Layers. Fabrication, Characterization, and Applications in Biosensing. Journal of the American Chemical Society, 1998, 120, 12108-12116.	6.6	381
4	Hsp70 Translocates into the Plasma Membrane after Stress and Is Released into the Extracellular Environment in a Membrane-Associated Form that Activates Macrophages. Journal of Immunology, 2008, 180, 4299-4307.	0.4	371
5	Impedance analysis of supported lipid bilayer membranes: a scrutiny of different preparation techniques. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1279, 169-180.	1.4	274
6	Impedance Analysis and Single-Channel Recordings on Nano-Black Lipid Membranes Based on Porous Alumina. Biophysical Journal, 2004, 86, 955-965.	0.2	236
7	Photoswitchable Hydrogen-Bonding in Self-Organized Cylindrical Peptide Systems. Angewandte Chemie - International Edition, 1999, 38, 1598-1601.	7.2	161
8	Transport across artificial membranes–an analytical perspective. Analytical and Bioanalytical Chemistry, 2006, 385, 433-451.	1.9	153
9	Tumor-Specific Hsp70 Plasma Membrane Localization Is Enabled by the Glycosphingolipid Gb3. PLoS ONE, 2008, 3, e1925.	1.1	141
10	Pannexin1 and Pannexin2 Channels Show Quaternary Similarities to Connexons and Different Oligomerization Numbers from Each Other. Journal of Biological Chemistry, 2010, 285, 24420-24431.	1.6	134
11	Mechanical Properties of Pore-Spanning Lipid Bilayers Probed by Atomic Force Microscopy. Biophysical Journal, 2006, 91, 217-226.	0.2	116
12	Self-Assembled Monolayers of Monofunctionalized Cyclodextrins onto Gold:  A Mass Spectrometric Characterization and Impedance Analysis of Hostâ^'Guest Interaction. Analytical Chemistry, 1996, 68, 3158-3165.	3.2	115
13	Specific Adhesion of Vesicles Monitored by Scanning Force Microscopy and Quartz Crystal Microbalance. Biophysical Journal, 2000, 78, 487-498.	0.2	112
14	Fluorescence nanoscopy by polarization modulation and polarization angle narrowing. Nature Methods, 2014, 11, 579-584.	9.0	107
15	Visualization of Chemical and Physical Properties of Calcium-Induced Domains in DPPC/DPPS Langmuirâ^'Blodgett Layers. Langmuir, 2001, 17, 2437-2445.	1.6	105
16	Crystal structure and functional mechanism of a human antimicrobial membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4586-4591.	3.3	104
17	The Quartz Crystal Microbalance as a Novel Means to Study Cell-Substrate Interactions In Situ. Cell Biochemistry and Biophysics, 2001, 34, 121-151.	0.9	100
18	Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB Journal, 2009, 23, 2467-2477.	0.2	95

#	Article	IF	Citations
19	DNA hybridization-enhanced porous silicon corrosion: mechanistic investigations and prospect for optical interferometric biosensing. Tetrahedron, 2004, 60, 11259-11267.	1.0	91
20	Channel Activity of a Viral Transmembrane Peptide in Micro-BLMs:Â Vpu1-32from HIV-1. Journal of the American Chemical Society, 2004, 126, 16267-16274.	6.6	91
21	Lipid Reorganization Induced by Shiga Toxin Clustering on Planar Membranes. PLoS ONE, 2009, 4, e6238.	1.1	90
22	Local Membrane Mechanics of Pore-Spanning Bilayers. Journal of the American Chemical Society, 2009, 131, 7031-7039.	6.6	90
23	Channel Activity of OmpF Monitored in Nano-BLMs. Biophysical Journal, 2006, 91, 2163-2171.	0.2	88
24	Tailored Synthetic Polyamines for Controlled Biomimetic Silica Formation. Journal of the American Chemical Society, 2010, 132, 1023-1031.	6.6	88
25	Pore-Spanning Lipid Bilayers Visualized by Scanning Force Microscopy. Journal of the American Chemical Society, 2000, 122, 8085-8086.	6.6	86
26	Impedance analysis of ion transport through gramicidin channels incorporated in solid supported lipid bilayers. Bioelectrochemistry, 1997, 42, 213-220.	1.0	83
27	Membrane-Suspended Nanocompartments Based on Ordered Pores in Alumina. ChemPhysChem, 2002, 3, 885-889.	1.0	77
28	Photocurrents Generated by Bacteriorhodopsin Adsorbed on Nano-Black Lipid Membranes. Biophysical Journal, 2005, 89, 1046-1054.	0.2	71
29	An Animal Virus-Derived Peptide Switches Membrane Morphology:Â Possible Relevance to Nodaviral Transfection Processesâ€. Biochemistry, 1999, 38, 5328-5336.	1.2	70
30	Quartz crystal microbalance investigation of the interaction of bacterial toxins with ganglioside containing solid supported membranes. European Biophysics Journal, 1997, 26, 261-270.	1.2	68
31	Reversible Photoisomerization of Self-Organized Cylindrical Peptide Assemblies at Airâ°Water and Solid Interfaces. Langmuir, 1999, 15, 3956-3964.	1.6	67
32	Pore-Suspending Lipid Bilayers on Porous Alumina Investigated by Electrical Impedance Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 11245-11254.	1.2	67
33	Kinetics and Thermodynamics of Annexin A1 Binding to Solid-Supported Membranes: A QCM Studyâ€. Biochemistry, 2002, 41, 10087-10094.	1.2	66
34	Valinomycin-mediated transport of alkali cations through solid supported membranes. Bioelectrochemistry, 1998, 45, 17-26.	1.0	64
35	Benefits and Limitations of Porous Substrates as Biosensors for Protein Adsorption. Analytical Chemistry, 2011, 83, 5624-5630.	3.2	64
36	Impedance and shear wave resonance analysis of ligand–receptor interactions at functionalized surfaces and of cell monolayers. Biosensors and Bioelectronics, 1997, 12, 787-808.	5.3	62

#	Article	IF	Citations
37	A highly membrane-active peptide in Flock House virus: implications for the mechanism of nodavirus infection. Chemistry and Biology, 1999, 6, 473-481.	6.2	60
38	Phosphatidylserine Membrane Domain Clustering Induced by Annexin A2/S100A10 Heterotetramerâ€. Biochemistry, 2005, 44, 15296-15303.	1.2	60
39	Activation of F-Actin Binding Capacity of Ezrin: Synergism of PIP2 Interaction and Phosphorylation. Biophysical Journal, 2011, 100, 1708-1717.	0.2	60
40	Combined Electrochemistry and Surfaceâ€Enhanced Infrared Absorption Spectroscopy of Gramicidin A Incorporated into Tethered Bilayer Lipid Membranes. Angewandte Chemie - International Edition, 2012, 51, 8114-8117.	7.2	60
41	Imaging and Patterning of Pore-Suspending Membranes with Scanning Ion Conductance Microscopy. Langmuir, 2009, 25, 3022-3028.	1.6	57
42	Specific binding of peanut agglutinin to G M1 -doped solid supported lipid bilayers investigated by shear wave resonator measurements. European Biophysics Journal, 1996, 25, 105-113.	1.2	55
43	Electrically insulating pore-suspending membranes on highly ordered porous alumina obtained from vesicle spreading. Soft Matter, 2008, 4, 250-253.	1.2	55
44	Silica precipitation with synthetic silaffin peptides. Organic and Biomolecular Chemistry, 2011, 9, 5482.	1.5	55
45	Cooperative Adsorption of Ezrin on PIP2-Containing Membranesâ€. Biochemistry, 2006, 45, 13025-13034.	1.2	54
46	Micro-BLMs on Highly Ordered Porous Silicon Substrates:  Rupture Process and Lateral Mobility. Langmuir, 2007, 23, 9134-9139.	1.6	51
47	Fluorinated Interfaces Drive Self-Association of Transmembrane α Helices in Lipid Bilayers. Angewandte Chemie - International Edition, 2006, 45, 2588-2591.	7.2	49
48	Preparation of Solvent-Free, Pore-Spanning Lipid Bilayers: Modeling the Low Tension of Plasma Membranes. Langmuir, 2011, 27, 7672-7680.	1.6	49
49	Interaction of melittin with solid supported membranes. Physical Chemistry Chemical Physics, 2000, 2, 4580-4585.	1.3	48
50	Influence of Gb3 glycosphingolipids differing in their fatty acid chain on the phase behaviour of solid supported membranes: chemical syntheses and impact of Shiga toxin binding. Chemical Science, 2014, 5, 3104.	3.7	48
51	Adhesion Kinetics of Functionalized Vesicles and Mammalian Cells: A Comparative Studyâ€. Langmuir, 2003, 19, 1816-1823.	1.6	47
52	A DNA-Inspired Synthetic Ion Channel Based on G–C Base Pairing. Journal of the American Chemical Society, 2015, 137, 34-37.	6.6	45
53	Synthetic Lugdunin Analogues Reveal Essential Structural Motifs for Antimicrobial Action and Proton Translocation Capability. Angewandte Chemie - International Edition, 2019, 58, 9234-9238.	7.2	44
54	Insights into the molecular mechanism of amyloid filament formation: Segmental folding of \hat{l}_{\pm} -synuclein on lipid membranes. Science Advances, 2021, 7, .	4.7	43

#	Article	IF	CITATIONS
55	Quantification of the Interaction between Charged Guest Molecules and Chemisorbed Monothiolated \hat{l}^2 -Cyclodextrins. Analytical Chemistry, 1999, 71, 2528-2533.	3.2	41
56	Impedance and QCM analysis of the protein resistance of self-assembled PEGylated alkanethiol layers on gold. Biomaterials, 2005, 26, 4237-4243.	5.7	41
57	Solid Supported Membranes Doped with PIP ₂ : Influence of Ionic Strength and pH on Bilayer Formation and Membrane Organization. Langmuir, 2013, 29, 14204-14213.	1.6	41
58	Phosphatidylinositol 4,5-Bisphosphate Alters the Number of Attachment Sites between Ezrin and Actin Filaments. Journal of Biological Chemistry, 2014, 289, 9833-9843.	1.6	41
59	Resolving single membrane fusion events on planar pore-spanning membranes. Scientific Reports, 2015, 5, 12006.	1.6	39
60	Membrane Partitioning of the Cleavage Peptide in Flock House Virus. Biophysical Journal, 2000, 78, 839-845.	0.2	38
61	Scanning Force Microscopy of Artificial Membranes. ChemBioChem, 2001, 2, 798.	1.3	38
62	Phase Transition of Individually Addressable Microstructured Membranes Visualized by Imaging Ellipsometry. Journal of Physical Chemistry B, 2007, 111, 13979-13986.	1.2	38
63	Voltage-dependent structural changes of the membrane-bound anion channel hVDAC1 probed by SEIRA and electrochemical impedance spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 9546-9555.	1.3	38
64	Adhesion of liposomes: a quartz crystal microbalance study. Measurement Science and Technology, 2003, 14, 1865-1875.	1.4	37
65	Actin Binding of Ezrin Is Activated by Specific Recognition of PIP ₂ -Functionalized Lipid Bilayers. Biochemistry, 2008, 47, 3762-3769.	1.2	37
66	Separating Attoliter-Sized Compartments Using Fluid Pore-Spanning Lipid Bilayers. ACS Nano, 2011, 5, 6935-6944.	7.3	36
67	Biomimetic functionalization of porous substrates: towards model systems for cellular membranes. Journal of Materials Chemistry, 2012, 22, 19348.	6.7	34
68	Reconstituting the formation of hierarchically porous silica patterns using diatom biomolecules. Journal of Structural Biology, 2018, 204, 64-74.	1.3	34
69	Monofunctionalized \hat{i}^2 -cyclodextrins as sensor elements for the detection of small molecules. Sensors and Actuators B: Chemical, 2000, 70, 243-253.	4.0	33
70	Membrane Composition Affects the Reversibility of Annexin A2t Binding to Solid Supported Membranes: A QCM Studyâ€. Biochemistry, 2003, 42, 3131-3141.	1.2	33
71	The Molecular Arrangement of Membrane-Bound Annexin A2-S100A10 Tetramer as Revealed by Scanning Force Microscopy. ChemBioChem, 2004, 5, 1003-1006.	1.3	33
72	Mechanics of lipid bilayers: What do we learn from pore-spanning membranes?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2977-2983.	1.9	33

#	Article	lF	CITATIONS
73	Impedance analysis of gramicidin D in pore-suspending membranes. Soft Matter, 2009, 5, 3347.	1.2	32
74	Idealizing Ion Channel Recordings by a Jump Segmentation Multiresolution Filter. IEEE Transactions on Nanobioscience, 2013, 12, 376-386.	2.2	32
75	Size and mobility of lipid domains tuned by geometrical constraints. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6064-E6071.	3.3	32
76	Visualization of Annexin I Binding to Calcium-Induced Phosphatidylserine Domains. ChemBioChem, 2001, 2, 587-590.	1.3	30
77	Epsin N-terminal Homology Domain (ENTH) Activity as a Function of Membrane Tension. Journal of Biological Chemistry, 2016, 291, 19953-19961.	1.6	29
78	2-Hydroxy Fatty Acid Enantiomers of Gb 3 Impact Shiga Toxin Binding and Membrane Organization. Biophysical Journal, 2015, 108, 2775-2778.	0.2	28
79	Voltage Dependence of Conformational Dynamics and Subconducting States of VDAC-1. Biophysical Journal, 2016, 111, 1223-1234.	0.2	28
80	Structure, gating and interactions of the voltage-dependent anion channel. European Biophysics Journal, 2021, 50, 159-172.	1.2	28
81	Orthogonal Functionalization of Nanoporous Substrates: Control of 3D Surface Functionality. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1068-1076.	4.0	26
82	Proton translocation across bacteriorhodopsin containing solid supported lipid bilayers. Chemistry and Physics of Lipids, 1997, 89, 141-152.	1.5	25
83	Elasticity Mapping of Poreâ€Suspending Native Cell Membranes. Small, 2009, 5, 832-838.	5.2	25
84	Creating and Modulating Microdomains in Poreâ€Spanning Membranes. ChemPhysChem, 2012, 13, 108-114.	1.0	25
85	Mode of Ezrin-Membrane Interaction as a Function of PIP 2 Binding and Pseudophosphorylation. Biophysical Journal, 2016, 110, 2710-2719.	0.2	25
86	SNARE-Mediated Single-Vesicle Fusion Events with Supported and Freestanding Lipid Membranes. Biophysical Journal, 2017, 112, 2348-2356.	0.2	25
87	Formation of irreversibly bound annexin A1 protein domains on POPC/POPS solid supported membranes. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1601-1610.	1.4	24
88	The M34A mutant of Connexin26 reveals active conductance states in pore-suspending membranes. Journal of Structural Biology, 2009, 168, 168-176.	1.3	24
89	Triazoleâ€Tailored Guanosine Dinucleosides as Biomimetic Ion Channels to Modulate Transmembrane Potential. Chemistry - A European Journal, 2014, 20, 3023-3028.	1.7	24
90	Measuring Cell Adhesion on RGD-Modified, Self-Assembled PEG Monolayers Using the Quartz Crystal Microbalance Technique. Macromolecular Bioscience, 2006, 6, 827-838.	2.1	22

#	Article	IF	CITATIONS
91	Synthesis of Gb 3 Glycosphingolipids with Labeled Head Groups: Distribution in Phaseâ€Separated Giant Unilamellar Vesicles. Angewandte Chemie - International Edition, 2019, 58, 17805-17813.	7.2	22
92	High-Speed Microscopy of Diffusion in Pore-Spanning Lipid Membranes. Nano Letters, 2018, 18, 5262-5271.	4.5	21
93	Specificity of Collybistin-Phosphoinositide Interactions. Journal of Biological Chemistry, 2016, 291, 244-254.	1.6	19
94	Partially Reversible Adsorption of Annexin A1 on POPC/POPS Bilayers Investigated by QCM Measurements, SFM, and DMC Simulations. ChemBioChem, 2006, 7, 106-115.	1.3	18
95	Rheology of Membrane-Attached Minimal Actin Cortices. Journal of Physical Chemistry B, 2018, 122, 4537-4545.	1.2	18
96	Shiga toxin binding alters lipid packing and the domain structure of Gb ₃ -containing membranes: a solid-state NMR study. Physical Chemistry Chemical Physics, 2019, 21, 15630-15638.	1.3	18
97	Differential recognition of lipid domains by two Gb3-binding lectins. Scientific Reports, 2020, 10, 9752.	1.6	18
98	Green Fluorescent Protein Changes the Conductance of Connexin 43 (Cx43) Hemichannels Reconstituted in Planar Lipid Bilayers. Journal of Biological Chemistry, 2012, 287, 2877-2886.	1.6	17
99	Bis-triazolyl diguanosine derivatives as synthetic transmembrane ion channels. Nature Protocols, 2016, 11, 1039-1056.	5.5	16
100	Evidence for multilayer formation of melittin on solid-supported phospholipid membranes by shear-wave resonator measurements. Chemistry and Physics of Lipids, 1998, 95, 95-104.	1.5	15
101	Membrane Activity of an Anion Channel from Clavibacter michiganense ssp. nebraskense. Langmuir, 2001, 17, 2251-2257.	1.6	15
102	Scrutiny of Annexin A1 Mediated Membraneâ^'Membrane Interaction by Means of a Thickness Shear Mode Resonator and Computer Simulationsâ€. Langmuir, 2004, 20, 7246-7253.	1.6	15
103	Multicomponent membranes on solid substrates: Interfaces for protein binding. Current Opinion in Colloid and Interface Science, 2010, 15, 479-488.	3.4	15
104	Quantifying the interaction of the C-terminal regions of polycystin-2 and polycystin-1 attached to a lipid bilayer by means of QCM. Biophysical Chemistry, 2010, 150, 47-53.	1.5	15
105	Phospholipids as an alternative to direct covalent coupling: Surface functionalization of nanoporous alumina for protein recognition and purification. Journal of Colloid and Interface Science, 2012, 366, 57-63.	5.0	15
106	Label-Free Detection of Protein–Ligand Interactions by the Quartz Crystal Microbalance. , 2005, 305, 047-064.		14
107	Elasticity mapping of apical cell membranes. Soft Matter, 2009, 5, 3262.	1.2	14
108	Macromolecular shape and interactions in layer-by-layer assemblies within cylindrical nanopores. Beilstein Journal of Nanotechnology, 2012, 3, 475-484.	1.5	14

#	Article	IF	CITATIONS
109	Cell Adhesion to Ordered Pores: Consequences for Cellular Elasticity. Journal of Adhesion Science and Technology, 2010, 24, 2287-2300.	1.4	13
110	Viscoelasticity of pore-spanning polymer membranes derived from giant polymersomes. Soft Matter, 2010, 6, 2508.	1.2	13
111	In situ generation of electrochemical gradients across pore-spanning membranes. RSC Advances, 2013, 3, 15752.	1.7	13
112	Driving a planar model system into the 3 rd dimension: generation and control of curved pore-spanning membrane arrays. Soft Matter, 2014, 10, 6228-6236.	1.2	13
113	Modulating the Lateral Tension of Solvent-Free Pore-Spanning Membranes. Langmuir, 2014, 30, 8186-8192.	1.6	13
114	3D-Membrane Stacks on Supported Membranes Composed of Diatom Lipids Induced by Long-Chain Polyamines. Langmuir, 2016, 32, 10144-10152.	1.6	13
115	Monitoring ATPase induced pH changes in single proteoliposomes with the lipid-coupled fluorophore Oregon Green 488. Analyst, The, 2017, 142, 2670-2677.	1.7	13
116	Viscoelasticity of Native and Artificial Actin Cortices Assessed by Nanoindentation Experiments. Nano Letters, 2020, 20, 6329-6335.	4.5	13
117	Fusion Pore Formation Observed during SNARE-Mediated Vesicle Fusion with Pore-Spanning Membranes. Biophysical Journal, 2020, 119, 151-161.	0.2	13
118	Channel activity of a phytotoxin of Clavibacter michiganense ssp. nebraskense in tethered membranes. European Biophysics Journal, 2001, 30, 421-429.	1.2	12
119	Energy Landscapes of Ligand-Receptor Couples Probed by Dynamic Force Spectroscopy. ChemPhysChem, 2001, 2, 577-579.	1.0	12
120	Impedance analysis of valinomycin activity in nano-BLMs. Chemistry and Physics of Lipids, 2009, 160, 109-113.	1.5	12
121	Molecular Recognition at the Membraneâ [^] Water Interface: Controlling Integral Peptide Helices by Off-Membrane Nucleobase Pairing. Journal of the American Chemical Society, 2010, 132, 8020-8028.	6.6	12
122	A membrane fusion assay based on pore-spanning lipid bilayers. Soft Matter, 2011, 7, 1644.	1.2	12
123	Gb ₃ Glycosphingolipids with Fluorescent Oligoene Fatty Acids: Synthesis and Phase Behavior in Model Membranes. ChemBioChem, 2017, 18, 2171-2178.	1.3	12
124	Fully Automatic Multiresolution Idealization for Filtered Ion Channel Recordings: Flickering Event Detection. IEEE Transactions on Nanobioscience, 2018, 17, 300-320.	2.2	12
125	High-resolution experimental and computational electrophysiology reveals weak \hat{l}^2 -lactam binding events in the porin PorB. Scientific Reports, 2019, 9, 1264.	1.6	12
126	ENTH domain-dependent membrane remodelling. Soft Matter, 2021, 17, 233-240.	1.2	12

#	Article	IF	CITATIONS
127	Membrane-interacting properties of the functionalised fatty acid moiety of muraymycin antibiotics. MedChemComm, 2015, 6, 879-886.	3.5	11
128	Phase separation in pore-spanning membranes induced by differences in surface adhesion. Physical Chemistry Chemical Physics, 2020, 22, 9308-9315.	1.3	11
129	Quantification of the Raf-C1 Interaction With Solid-Supported Bilayers. ChemBioChem, 2002, 3, 190-197.	1.3	10
130	Biochemical Applications of Solid Supported Membranes on Gold Surfaces: Quartz Crystal Microbalance and Impedance Analysis. Membrane Science and Technology, 2003, 7, 991-1016.	0.5	10
131	Influence of α-Hydroxylation of Glycolipids on Domain Formation in Lipid Monolayers. Langmuir, 2006, 22, 7454-7457.	1.6	10
132	Specific Adsorption of AnnexinÂA1 on Solid Supported Membranes: AÂModel Study., 2006,, 281-302.		10
133	Silica Precipitation by Synthetic Minicollagens. Biomacromolecules, 2013, 14, 683-687.	2.6	10
134	Macroporous silicon chips for laterally resolved, multi-parametric analysis of epithelial barrier function. Lab on A Chip, 2012, 12, 2329.	3.1	9
135	\hat{l}^2 -Glutamine-mediated self-association of transmembrane \hat{l}^2 -peptides within lipid bilayers. Chemical Science, 2016, 7, 5900-5907.	3.7	9
136	Reply to "Polarization modulation adds little additional information to super-resolution fluorescence microscopy". Nature Methods, 2016, 13, 8-9.	9.0	9
137	SNARE-Mediated Fusion of Single Chromaffin Granules with Pore-Spanning Membranes. Biophysical Journal, 2019, 116, 308-318.	0.2	9
138	An antibiotic-resistance conferring mutation in a neisserial porin: Structure, ion flux, and ampicillin binding. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183601.	1.4	9
139	Modulation of the conductance of a 2,2′-bipyridine-functionalized peptidic ion channel by Ni2+. European Biophysics Journal, 2008, 37, 1065-1071.	1.2	8
140	Chemically synthesized Gb3 glycosphingolipids: tools to access their function in lipid membranes. European Biophysics Journal, 2021, 50, 109-126.	1.2	8
141	Pore-Spanning Plasma Membranes Derived from Giant Plasma Membrane Vesicles. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 25805-25812.	4.0	8
142	Controlling Association of Vesicle Embedded Peptides by Alteration of the Physical State of the Lipid Matrixâ€. Biochemistry, 2005, 44, 5188-5195.	1.2	7
143	HIV-1 Nef Perturbs Artificial Membranes: Investigation of the Contribution of the Myristoyl Anchor. Biophysical Journal, 2009, 96, 3242-3250.	0.2	7
144	Formation of Silica Precipitates on Membrane Surfaces in Two and Three Dimensions. Langmuir, 2010, 26, 13422-13428.	1.6	7

#	Article	IF	Citations
145	Arrangement of Annexin A2 tetramer and its impact on the structure and diffusivity of supported lipid bilayers. Soft Matter, 2010, 6, 4084.	1.2	7
146	Combining Reflectometry and Fluorescence Microscopy: An Assay for the Investigation of Leakage Processes across Lipid Membranes. Analytical Chemistry, 2014, 86, 1366-1371.	3.2	7
147	Binding assay for low molecular weight analytes based on reflectometry of absorbing molecules in porous substrates. Analyst, The, 2014, 139, 1987-1992.	1.7	7
148	Permeabilization Assay for Antimicrobial Peptides Based on Pore-Spanning Lipid Membranes on Nanoporous Alumina. Langmuir, 2014, 30, 4767-4774.	1.6	7
149	Microporous device for local electric recordings on model lipid bilayers. Journal Physics D: Applied Physics, 2015, 48, 025401.	1.3	7
150	Continuous Pore-Spanning Lipid Bilayers on Silicon Oxide-Coated Porous Substrates. Langmuir, 2017, 33, 14175-14183.	1.6	7
151	Selfâ€Assembly of a Guanosine Derivative To Form Nanostructures and Transmembrane Channels. Chemistry - A European Journal, 2018, 24, 4002-4005.	1.7	7
152	Influence of cross-linkers on ezrin-bound minimal actin cortices. Progress in Biophysics and Molecular Biology, 2019, 144, 91-101.	1.4	7
153	Cooperativity of membrane-protein and protein–protein interactions control membrane remodeling by epsin 1 and affects clathrin-mediated endocytosis. Cellular and Molecular Life Sciences, 2021, 78, 2355-2370.	2.4	7
154	Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 566-578.	1.4	7
155	Forces, Kinetics, and Fusion Efficiency Altered by the Full-Length Synaptotagmin-1 -PI(4,5)P ₂ Interaction in Constrained Geometries. Nano Letters, 2022, 22, 1449-1455.	4.5	7
156	Mechanistic insights into the translocation of full length HIV-1 Tat across lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2685-2693.	1.4	6
157	Phosphorylation of C-terminal polycystin-2 influences the interaction with PIGEA14: A QCM study based on solid supported membranes. Biochemical and Biophysical Research Communications, 2013, 437, 532-537.	1.0	6
158	Neuroligin-2 dependent conformational activation of collybistin reconstituted in supported hybrid membranes. Journal of Biological Chemistry, 2020, 295, 18604-18613.	1.6	6
159	No Label Required: Protein Binding at Membrane Interfaces Visualized through Colloid Phase Transitions. ChemPhysChem, 2004, 5, 1121-1124.	1.0	5
160	Synthesis of Gb 3 Glycosphingolipids with Labeled Head Groups: Distribution in Phaseâ€Separated Giant Unilamellar Vesicles. Angewandte Chemie, 2019, 131, 17969-17977.	1.6	5
161	Precipitation of Calcium Carbonate Inside Giant Unilamellar Vesicles Composed of Fluid-Phase Lipids. Langmuir, 2020, 36, 13244-13250.	1.6	5
162	Leaflet-Dependent Distribution of PtdIns[4,5]P ₂ in Supported Model Membranes. Langmuir, 2020, 36, 1320-1328.	1.6	5

#	Article	IF	CITATIONS
163	In vitro single vesicle fusion assays based on pore-spanning membranes: merits and drawbacks. European Biophysics Journal, 2021, 50, 239-252.	1.2	5
164	Total synthesis and mechanism of action of the antibiotic armeniaspirol A. Chemical Science, 2021, 12, 16023-16034.	3.7	5
165	Heterogeneous Idealization of Ion Channel Recordings – Open Channel Noise. IEEE Transactions on Nanobioscience, 2021, 20, 57-78.	2.2	4
166	Modellmembranen auf OberflÄ e hen. Verankert und doch mobil. Chemie in Unserer Zeit, 2008, 42, 116-127.	0.1	3
167	Interactions of laminin peptides with phospholipids in Langmuir films and vesicles. Chemical Physics Letters, 2008, 464, 226-229.	1.2	3
168	Quantification of Hv1-induced proton translocation by a lipid-coupled Oregon Green 488-based assay. Analytical and Bioanalytical Chemistry, 2018, 410, 6497-6505.	1.9	3
169	Lipidomics of Thalassiosira pseudonana as a function of valve SDV synthesis. Journal of Applied Phycology, 2022, 34, 1471-1481.	1.5	3
170	The Interaction of Gb ₃ Glycosphingolipids with <i>I</i> _d and <i>I</i> _o Phase Lipids in Lipid Monolayers Is a Function of Their Fatty Acids. Langmuir, 2022, 38, 5874-5882.	1.6	3
171	Chapter 3 Pore-Suspending Membranes on Highly Ordered Porous Alumina and Porous Silicon Substrates: Preparation, Characterization, and Application. Behavior Research Methods, 2008, 7, 59-78.	2.3	2
172	Towards multifunctional inorganic materials: biopolymeric templates. Beilstein Journal of Nanotechnology, 2015, 6, 1698-1699.	1.5	2
173	Synthetische Analoga zeigen die essentiellen Strukturmotive von Lugdunin und seinen Protonentransport. Angewandte Chemie, 2019, 131, 9333-9338.	1.6	2
174	Biochemical Applications of Solid Supported Membranes on Gold Surfaces: Quartz Crystal Microbalance and Impedance Analysis. ChemInform, 2004, 35, no.	0.1	1
175	Membrane Fusion Assay Based on Pore-Spanning Lipid Bilayers. Biophysical Journal, 2010, 98, 672a-673a.	0.2	1
176	Membrane fusion mediated by peptidic SNARE protein analogues: Evaluation of FRETâ€based bulk leaflet mixing assays. Journal of Peptide Science, 2021, 27, e3327.	0.8	1
177	Noninvasive Electrical Sensor Devices to Monitor Living Cells Online. Springer Series on Chemical Sensors and Biosensors, 2004, , 199-236.	0.5	1
178	TAT-RHIM: a more complex issue than expected. Biochemical Journal, 2022, , .	1.7	1
179	The role of the transmembrane domain of silicanin-1: Reconstitution of the full-length protein in artificial membranes. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183921.	1.4	1
180	Single Hemichannels Recorded in Lipid Bilayers and Artificial Gap Junction Formation with Cells. Biophysical Journal, 2011, 100, 562a-563a.	0.2	0

#	Article	IF	CITATIONS
181	Creating and Modulating Membrane Microdomains in Pore-Spanning Bilayers. Biophysical Journal, 2012, 102, 26a-27a.	0.2	0
182	Channel Crystal Structure and Antimicrobial Mechanism of Dermcidin from Human Skin. Biophysical Journal, 2013, 104, 241a.	0.2	0
183	Mechanics of F-Actin-Membrane Composites Investigated by Atomic Force Microscopy. Biophysical Journal, 2014, 106, 500a.	0.2	O
184	Planar Pore-Spanning Membranes: A Platform to Study Snare-Mediated Fusion Processes. Biophysical Journal, 2016, 110, 520a.	0.2	0
185	Self-Organization of Actomyosin Networks Attached to Artificial Membranes. Biophysical Journal, 2016, 110, 126a.	0.2	O
186	Synapse on a Chip: SNARE-Mediated Membrane Fusion in Planar Pore-Spanning Membranes. Biophysical Journal, 2016, 110, 248a.	0.2	0
187	Pore-Spanning Membranes: Lipid Domains in Confined Geometry. Biophysical Journal, 2018, 114, 392a.	0.2	O
188	Pore-Spanning Membranes: A Versatile Tool to Investigate Dynamic Processes of Lipid Bilayers. Biophysical Journal, 2019, 116, 7a.	0.2	0
189	Lipid Membranes on Highly Ordered Porous Alumina Substrates. , 2008, , .		O
190	Biofunctionalization of Nanoporous Alumina Substrates. , 2014, , 911-940.		0