Rashad Badran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1810653/publications.pdf Version: 2024-02-01

Ρλομλη Βληρλη

#	Article	IF	CITATIONS
1	Fabrication of Heterojunction Diode Based on n-ZnO Nanowires/p-Si Substrate: Temperature Dependent Transport Characteristics. Journal of Nanoscience and Nanotechnology, 2017, 17, 581-587.	0.9	4
2	Fabrication of ZnO Nanorods Based p–n Heterojunction Diodes and Their Electrical Behavior with Temperature. Journal of Nanoelectronics and Optoelectronics, 2017, 12, 731-735.	0.5	5
3	Fabrication and Temperature Dependent Electrical Characterization of <i> n</i> -ZnO Nanowires/ <i>p</i> -Si Substrate Heterojunction Diodes. Journal of Nanoelectronics and Optoelectronics, 2017, 12, 1162-1166.	0.5	1
4	Analytical Solution of Steady-State Transport Equation for Photocarriers in CdTe Photovoltaics Under Bias-Dependent Photoluminescence. Journal of Nanoelectronics and Optoelectronics, 2017, 12, 690-696.	0.5	0
5	An Analysis of Heavy-Ion Elastic Scattering Processes Using Numerical Model Based on the Partial Wave Parameterised S-Matrix with Regge Pole Factor. Brazilian Journal of Physics, 2016, 46, 341-354.	1.4	2
6	Fabrication and Characterization of <i>n</i> -ZnO Hexagonal Nanorods/ <i>p</i> -Si Heterojunction Diodes: Temperature-Dependant Electrical Characteristics. Journal of Nanoscience and Nanotechnology, 2015, 15, 4969-4975.	0.9	7
7	Regge pole analysis of elastic scattering of α particles by even isotopes of Ni target nuclei at incident energies above Coulomb barrier. International Journal of Modern Physics E, 2015, 24, 1550082.	1.0	3
8	Synthesis and Properties of Aligned ZnO Nanorods on Si Substrate and Their Applications for <i>p</i> -Si/ <i>n</i> -ZnO Heterojunction Diode. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 688-693.	0.5	2
9	Temperature-Dependent Electrical Properties of Sn-Doped ZnO Nanowires. Science of Advanced Materials, 2015, 7, 2684-2691.	0.7	2
10	Synthesis and Characterization of Iron Oxide Nanoparticles for Phenyl Hydrazine Sensor Applications. Sensor Letters, 2014, 12, 97-101.	0.4	144
11	Growth and Properties of Sn-Doped ZnO Nanowires for Heterojunction Diode Application. Science of Advanced Materials, 2014, 6, 1993-2000.	0.7	8
12	Electrical properties of solution processed p-SnS nanosheets/n-TiO2 heterojunction assembly. Applied Physics Letters, 2013, 103, .	3.3	18
13	Exploring diffractive features of elastic scattering of 6Li by different target nuclei at different energies. Canadian Journal of Physics, 2013, 91, 355-364.	1.1	8
14	<l>n</l> -ZnO Based Nanostructure/ <l>p</l> -Silicon Substrate Based Efficient <l> p</l> – <l>n</l> Heterojunction Diode. Science of Advanced Materials, 2013, 5, 301-307.	0.7	5
15	Temperature Dependant Structural and Electrical Properties of ZnO Nanowire Networks. Journal of Nanoscience and Nanotechnology, 2012, 12, 68-74.	0.9	6
16	Electrical Properties of <l>p</l> -Si/ <l>n</l> -ZnO Nanowires Heterojunction Devices. Advanced Science Letters, 2011, 4, 24-28.	0.2	13
17	STRONG ABSORPTION ANALYSIS OF ELASTIC SCATTERING REACTIONS USING MCINTYRE AND FRAHN–VENTER MODELS. International Journal of Modern Physics E, 2010, 19, 2199-2217.	1.0	9
18	Synthesis and characterization of zinc oxide nanorods on silicon for the fabrication of p-Si/n-ZnO heterojunction diode. Journal of Alloys and Compounds, 2010, 508, 375-379.	5.5	29

Rashad Badran

#	Article	IF	CITATIONS
19	A study of optical properties of hydrogenated microcrystalline silicon films prepared by plasma enhanced chemical vapor deposition technique at different conditions of excited power and pressure. Vacuum, 2009, 83, 1023-1030.	3.5	11
20	Analysis and modelling of generation–recombination noise in amorphous semiconductors. Thin Solid Films, 2003, 427, 133-136.	1.8	3
21	Strong absorption formalism applied to the direct transfer reaction leading to continuum states. Journal of Physics G: Nuclear and Particle Physics, 1996, 22, 1441-1454.	3.6	12
22	First- and second-order reduction factors for E (X) e Jahn-Teller system. Journal of Physics Condensed Matter, 1993, 5, 1505-1516.	1.8	5
23	An analysis of the strongly coupled E(X)e Jahn-Teller system: anisotropy and the inversion splitting. Journal of Physics Condensed Matter, 1991, 3, 6329-6343.	1.8	9