Dawn E Quelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1809265/publications.pdf

Version: 2024-02-01

47 4,097 23 47 papers citations h-index g-index

51 51 51 5331 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Tumor Suppression at the Mouse INK4a Locus Mediated by the Alternative Reading Frame Product p19. Cell, 1997, 91, 649-659.	13.5	1,519
2	Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene, 1997, 15, 203-211.	2.6	527
3	Nucleophosmin (B23) Targets ARF to Nucleoli and Inhibits Its Function. Molecular and Cellular Biology, 2005, 25, 1258-1271.	1.1	264
4	The t(8;21) fusion protein, AML1–ETO, specifically represses the transcription of the p14ARF tumor suppressor in acute myeloid leukemia. Nature Medicine, 2002, 8, 743-750.	15.2	258
5	p53 Acetylation: Regulation and Consequences. Cancers, 2015, 7, 30-69.	1.7	256
6	Large-Scale Molecular Comparison of Human Schwann Cells to Malignant Peripheral Nerve Sheath Tumor Cell Lines and Tissues. Cancer Research, 2006, 66, 2584-2591.	0.4	191
7	ARF Function Does Not Require p53 Stabilization or Mdm2 Relocalization. Molecular and Cellular Biology, 2002, 22, 196-206.	1.1	116
8	Cyclin G1 has growth inhibitory activity linked to the ARF-Mdm2-p53 and pRb tumor suppressor pathways. Molecular Cancer Research, 2003, 1, 195-206.	1.5	99
9	Development and translational imaging of a TP53 porcine tumorigenesis model. Journal of Clinical Investigation, 2014, 124, 4052-4066.	3.9	92
10	Respiratory Syncytial Virus Decreases p53 Protein to Prolong Survival of Airway Epithelial Cells. Journal of Immunology, 2007, 179, 2741-2747.	0.4	64
11	D-Type Cyclins and Their Cyclin-dependent Kinases: G1 Phase Integrators of the Mitogenic Response. Cold Spring Harbor Symposia on Quantitative Biology, 1994, 59, 11-19.	2.0	58
12	A porcine model of neurofibromatosis type 1 that mimics the human disease. JCI Insight, 2018, 3, .	2.3	44
13	ARF Directly Binds DP1: Interaction with DP1 Coincides with the G1 Arrest Function of ARF. Molecular and Cellular Biology, 2005, 25, 8024-8036.	1.1	41
14	Gene Expression Signatures Identify Novel Therapeutics for Metastatic Pancreatic Neuroendocrine Tumors. Clinical Cancer Research, 2020, 26, 2011-2021.	3.2	40
15	Identification of Novel ARF Binding Proteins by Two-Hybrid Screening. Cell Cycle, 2006, 5, 642-647.	1.3	38
16	A Novel Nuclear Interactor of ARF and MDM2 (NIAM) That Maintains Chromosomal Stability. Journal of Biological Chemistry, 2007, 282, 1322-1333.	1.6	38
17	RABL6A Is an Essential Driver of MPNSTs that Negatively Regulates the RB1 Pathway and Sensitizes Tumor Cells to CDK4/6 Inhibitors. Clinical Cancer Research, 2020, 26, 2997-3011.	3.2	34
18	RABL6A Promotes G1–S Phase Progression and Pancreatic Neuroendocrine Tumor Cell Proliferation in an Rb1-Dependent Manner. Cancer Research, 2014, 74, 6661-6670.	0.4	32

#	Article	IF	CITATIONS
19	Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers, 2021, 13, 5117.	1.7	31
20	CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. International Journal of Molecular Sciences, 2020, 21, 3018.	1.8	30
21	Identification of novel ARF binding proteins by two-hybrid screening. Cell Cycle, 2006, 5, 641-6.	1.3	29
22	The ARF Tumor Suppressor Inhibits Tumor Cell Colonization Independent of p53 in a Novel Mouse Model of Pancreatic Ductal Adenocarcinoma Metastasis. Molecular Cancer Research, 2011, 9, 867-877.	1.5	26
23	RABL6A Promotes Oxaliplatin Resistance in Tumor Cells and Is a New Marker of Survival for Resected Pancreatic Ductal Adenocarcinoma Patients. Genes and Cancer, 2013, 4, 273-284.	0.6	26
24	RABL6A inhibits tumor-suppressive PP2A/AKT signaling to drive pancreatic neuroendocrine tumor growth. Journal of Clinical Investigation, 2019, 129, 1641-1653.	3.9	25
25	DNA Damage-Induced G 1 Arrest in Hematopoietic Cells Is Overridden following Phosphatidylinositol 3-Kinase-Dependent Activation of Cyclin-Dependent Kinase 2. Molecular and Cellular Biology, 2001, 21, 6113-6121.	1.1	23
26	Nuclear interactor of ARF and Mdm2 regulates multiple pathways to activate p53. Cell Cycle, 2014, 13, 1288-1298.	1.3	23
27	Immunohistochemical Markers for Prospective Studies in Neurofibromatosis-1 Porcine Models. Journal of Histochemistry and Cytochemistry, 2017, 65, 607-618.	1.3	21
28	Residues in the alternative reading frame tumor suppressor that influence its stability and p53-independent activities. Experimental Cell Research, 2009, 315, 1326-1335.	1.2	19
29	Combination of Proteasome and Histone Deacetylase Inhibitors Overcomes the Impact of Gain-of-Function p53 Mutations. Disease Markers, 2018, 2018, 1-7.	0.6	13
30	Longitudinal phenotype development in a minipig model of neurofibromatosis type 1. Scientific Reports, 2020, 10, 5046.	1.6	13
31	Myst2/Kat7 histone acetyltransferase interaction proteomics reveals tumour-suppressor Niam as a novel binding partner in embryonic stem cells. Scientific Reports, 2017, 7, 8157.	1.6	12
32	RABL6A, a Novel RAB-Like Protein, Controls Centrosome Amplification and Chromosome Instability in Primary Fibroblasts. PLoS ONE, 2013, 8, e80228.	1,1	12
33	Assessment of nociception and related quality-of-life measures in a porcine model of neurofibromatosis type 1. Pain, 2019, 160, 2473-2486.	2.0	11
34	Pdgfrα-Cre mediated knockout of the aryl hydrocarbon receptor protects mice from high-fat diet induced obesity and hepatic steatosis. PLoS ONE, 2020, 15, e0236741.	1.1	11
35	NIAM-Deficient Mice Are Predisposed to the Development of Proliferative Lesions including B-Cell Lymphomas. PLoS ONE, 2014, 9, e112126.	1.1	7
36	Prognostic and therapeutic value of the Hippo pathway, RABL6A, and p53-MDM2 axes in sarcomas. Oncotarget, 2021, 12, 740-755.	0.8	7

#	Article	IF	CITATIONS
37	RABL6A Regulates Schwann Cell Senescence in an RB1-Dependent Manner. International Journal of Molecular Sciences, 2021, 22, 5367.	1.8	7
38	Phosphorylatable and epitope-tagged human erythropoietins: Utility and purification of native baculovirus-derived forms. Protein Expression and Purification, 1992, 3, 461-469.	0.6	6
39	Combination therapies for MPNSTs targeting RABL6A-RB1 signaling. Oncotarget, 2021, 12, 10-14.	0.8	5
40	Generation and Characterization of Monoclonal Antibodies to NIAM: A Nuclear Interactor of ARF and Mdm2. Hybridoma, 2008, 27, 159-166.	0.5	4
41	Development and comparison of novel bioluminescent mouse models of pancreatic neuroendocrine neoplasm metastasis. Scientific Reports, 2021, 11, 10252.	1.6	4
42	RABL6A Promotes Pancreatic Neuroendocrine Tumor Angiogenesis and Progression In Vivo. Biomedicines, 2021, 9, 633.	1.4	4
43	Utility of CD138/syndecan-1 immunohistochemistry for localization of plasmacytes is tissue-dependent in B6 mice. BMC Research Notes, 2022, 15, .	0.6	4
44	Porcine cancer models for translational oncology. Molecular and Cellular Oncology, 2014, 1, e969626.	0.3	3
45	Oncogenic RABL6A promotes NF1-associated MPNST progression in vivo. Neuro-Oncology Advances, 2022, 4, vdac047.	0.4	3
46	ARF sees $Pdgfr\hat{l}^2$ through the miR. Cell Cycle, 2014, 13, 1520-1521.	1.3	2
47	Validating indicators of CNS disorders in a swine model of neurological disease. PLoS ONE, 2020, 15, e0228222.	1.1	2