Andrés Córdoba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1809033/publications.pdf

Version: 2024-02-01

687363 677142 29 572 13 22 citations g-index h-index papers 30 30 30 611 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of charge inversion on nanoconfined flow of multivalent ionic solutions. Physical Chemistry Chemical Physics, 2022, , .	2.8	4
2	lonic Transport in Electrostatic Janus Membranes. An Explicit Solvent Molecular Dynamic Simulation. ACS Nano, 2022, 16, 3768-3775.	14.6	9
3	Examination of Nonuniversalities in Entangled Polymer Melts during the Start-Up of Steady Shear Flow. Macromolecules, 2021, 54, 8033-8042.	4.8	4
4	Nonequilibrium thermodynamics for soft matter made easy(er). Physics of Fluids, 2021, 33, .	4.0	4
5	Polymer rheology predictions from first principles using the slip-link model. Journal of Rheology, 2020, 64, 1035-1043.	2.6	17
6	A simple microswimmer model inspired by the general equation for nonequilibrium reversible–irreversible coupling. Journal of Chemical Physics, 2020, 152, 194902.	3.0	1
7	1CPN: A coarse-grained multi-scale model of chromatin. Journal of Chemical Physics, 2019, 150, 215102.	3.0	29
8	The Effects of the Interplay between Motor and Brownian Forces on the Rheology of Active Gels. Journal of Physical Chemistry B, 2018, 122, 4267-4277.	2.6	1
9	A Molecular View of the Dynamics of dsDNA Packing Inside Viral Capsids in the Presence of Ions. Biophysical Journal, 2017, 112, 1302-1315.	0.5	20
10	A boundary integral method for computing forces on particles in unsteady Stokes and linear viscoelastic fluids. International Journal for Numerical Methods in Fluids, 2016, 82, 198-217.	1.6	5
11	Tension-Dependent Free Energies of Nucleosome Unwrapping. ACS Central Science, 2016, 2, 660-666.	11.3	67
12	Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation. ACS Central Science, 2016, 2, 614-620.	11.3	13
13	Anisotropy and probe-medium interactions in the microrheology of nematic fluids. Journal of Rheology, 2016, 60, 75-95.	2.6	6
14	Analytic slip-link expressions for universal dynamic modulus predictions of linear monodisperse polymer melts. Rheologica Acta, 2015, 54, 169-183.	2.4	16
15	The role of filament length, finite-extensibility and motor force dispersity in stress relaxation and buckling mechanisms in non-sarcomeric active gels. Soft Matter, 2015, 11, 38-57.	2.7	9
16	A single-chain model for active gels I: active dumbbell model. RSC Advances, 2014, 4, 17935.	3.6	8
17	A Single-Chain Model to Predict Buckling in Active Gels. Biophysical Journal, 2014, 106, 164a.	0.5	0
18	The analytic solution of Stokes for time-dependent creeping flow around a sphere: Application to linear viscoelasticity as an ingredient for the generalized Stokes–Einstein relation and microrheology analysis. Journal of Non-Newtonian Fluid Mechanics, 2013, 200, 3-8.	2.4	29

#	Article	lF	CITATIONS
19	The effects of compressibility, hydrodynamic interaction and inertia on two-point, passive microrheology of viscoelastic materials. Soft Matter, 2013, 9, 3521.	2.7	9
20	Treating inertia in passive microbead rheology. Physical Review E, 2012, 85, 021504.	2.1	69
21	The effects of hydrodynamic interaction and inertia in determining the high-frequency dynamic modulus of a viscoelastic fluid with two-point passive microrheology. Physics of Fluids, 2012, 24, .	4.0	23
22	Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology. Physical Review E, 2012, 85, 041504.	2.1	35
23	Elimination of inertia from a Generalized Langevin Equation: Applications to microbead rheology modeling and data analysis. Journal of Rheology, 2012, 56, 185-212.	2.6	33
24	Comparative analysis for three different immobilisation strategies in the hexavalent chromium biosorption process using ⟨i⟩Bacillus sphaericus⟨ i⟩ Sâ€layer. Canadian Journal of Chemical Engineering, 2011, 89, 1281-1287.	1.7	6
25	Quantitative fit of a model for proving of bread dough and determination of dough properties. Journal of Food Engineering, 2010, 96, 440-448.	5.2	13
26	Lipase supported on granular activated carbon and activated carbon cloth as a catalyst in the synthesis of biodiesel fuel. Journal of Molecular Catalysis B: Enzymatic, 2010, 66, 166-171.	1.8	56
27	Chromate reduction by Arthrobacter CR47 in biofilm packed bed reactors. Journal of Hazardous Materials, 2008, 151, 274-279.	12.4	35
28	The plasticizing effect of alginate on the thermoplastic starch/glycerin blends. Carbohydrate Polymers, 2008, 73, 409-416.	10.2	48
29	MUnCH: a calculator for propagating statistical and other sources of error in passive microrheology. Rheologica Acta, 0, , 1.	2.4	3