Paul J Coffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1808886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504, 451-455.	13.7	3,412
2	Forkhead-box transcription factors and their role in the immune system. Nature Reviews Immunology, 2004, 4, 889-899.	10.6	352
3	Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood, 2010, 115, 965-974.	0.6	337
4	Amphiregulin Enhances Regulatory T Cell-Suppressive Function via the Epidermal Growth Factor Receptor. Immunity, 2013, 38, 275-284.	6.6	324
5	Mesenchymal Stromal/stem Cell-derived Extracellular Vesicles Promote Human Cartilage Regeneration <i>In Vitro</i> . Theranostics, 2018, 8, 906-920.	4.6	252
6	Stabilization of the Transcription Factor Foxp3 by the Deubiquitinase USP7 Increases Treg-Cell-Suppressive Capacity. Immunity, 2013, 39, 259-271.	6.6	248
7	The role of STATs in myeloid differentiation and leukemia. Oncogene, 2000, 19, 2511-2522.	2.6	203
8	Canonical Wnt Signaling Negatively Modulates Regulatory T Cell Function. Immunity, 2013, 39, 298-310.	6.6	183
9	Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood, 2011, 118, 3538-3548.	0.6	134
10	In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem Cell Research, 2014, 12, 428-440.	0.3	126
11	Rapid Temporal Control of Foxp3 Protein Degradation by Sirtuin-1. PLoS ONE, 2011, 6, e19047.	1.1	100
12	Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression. Cell Reports, 2015, 12, 1986-1996.	2.9	98
13	FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-κB to promote survival of human B cells. Blood, 2014, 124, 3431-3440.	0.6	86
14	Post-translational modification networks regulating FOXP3 function. Trends in Immunology, 2014, 35, 368-378.	2.9	84
15	Intestinal Failure and Aberrant Lipid Metabolism in Patients WithÂDGAT1 Deficiency. Gastroenterology, 2018, 155, 130-143.e15.	0.6	83
16	SOX4 Mediates TGF-Î ² -Induced Expression of Mesenchymal Markers during Mammary Cell Epithelial to Mesenchymal Transition. PLoS ONE, 2013, 8, e53238.	1.1	82
17	Epidermal Growth Factor Receptor Expression Licenses Type-2 Helper T Cells to Function in a T Cell Receptor-Independent Fashion. Immunity, 2017, 47, 710-722.e6.	6.6	82
18	Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia. Cell Death and Disease, 2017, 8, e2927-e2927.	2.7	72

PAUL J COFFER

#	Article	IF	CITATIONS
19	Autophagy Proteins ATG5 and ATG7 Are Essential for the Maintenance of Human CD34+ Hematopoietic Stem-Progenitor Cells. Stem Cells, 2016, 34, 1651-1663.	1.4	67
20	SOX4: Joining the Master Regulators of Epithelial-to-Mesenchymal Transition?. Trends in Cancer, 2017, 3, 571-582.	3.8	64
21	STAT5 is essential for IL-7–mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Advances, 2018, 2, 2199-2213.	2.5	58
22	FOXP1 Promotes Embryonic Neural Stem Cell Differentiation by Repressing Jagged1 Expression. Stem Cell Reports, 2017, 9, 1530-1545.	2.3	56
23	Autophagy Is a Tolerance-Avoidance Mechanism that Modulates TCR-Mediated Signaling and Cell Metabolism to Prevent Induction of T Cell Anergy. Cell Reports, 2018, 24, 1136-1150.	2.9	50
24	Inhibition of FOXP3/NFAT Interaction Enhances T Cell Function after TCR Stimulation. Journal of Immunology, 2015, 195, 3180-3189.	0.4	44
25	Context-Specific Effects of TGF-β/SMAD3 in Cancer Are Modulated by the Epigenome. Cell Reports, 2015, 13, 2480-2490.	2.9	43
26	The forkhead transcription factor FOXP1 represses human plasma cell differentiation. Blood, 2015, 126, 2098-2109.	0.6	42
27	The Role of WNT Signaling in Mature T Cells: T Cell Factor Is Coming Home. Journal of Immunology, 2018, 201, 2193-2200.	0.4	40
28	SOX4 can redirect TGF-β-mediated SMAD3-transcriptional output in a context-dependent manner to promote tumorigenesis. Nucleic Acids Research, 2018, 46, 9578-9590.	6.5	37
29	Histone deacetylase inhibition modulates cell fate decisions during myeloid differentiation. Haematologica, 2010, 95, 1052-1060.	1.7	35
30	Nemo-like Kinase Drives Foxp3 Stability and Is Critical for Maintenance of Immune Tolerance by Regulatory T Cells. Cell Reports, 2019, 26, 3600-3612.e6.	2.9	35
31	Activation of 12-O-Tetradecanoylphorbol-13-acetate Response Element- and Dyad Symmetry Element-dependent Transcription by Interleukin-5 Is Mediated by Jun N-terminal Kinase/Stress-activated Protein Kinase Kinases. Journal of Biological Chemistry, 1997, 272, 2319-2325.	1.6	34
32	Acetylation of C/EBPε is a prerequisite for terminal neutrophil differentiation. Blood, 2015, 125, 1782-1792.	0.6	34
33	Global transcriptional analysis identifies a novel role for SOX4 in tumor-induced angiogenesis. ELife, 2018, 7, .	2.8	32
34	C/EBPÉ' is crucial determinant of epithelial maintenance by preventing epithelial-to-mesenchymal transition. Nature Communications, 2020, 11, 785.	5.8	30
35	SOX4 inhibits oligodendrocyte differentiation of embryonic neural stem cells in vitro by inducing Hes5 expression. Stem Cell Research, 2018, 33, 110-119.	0.3	29
36	Delayed administration of neural stem cells after hypoxia–ischemia reduces sensorimotor deficits, cerebral lesion size, and neuroinflammation in neonatal mice. Pediatric Research, 2017, 81, 127-135.	1.1	28

PAUL J COFFER

#	Article	IF	CITATIONS
37	In Vitro Evaluation of Spider Silk Meshes as a Potential Biomaterial for Bladder Reconstruction. PLoS ONE, 2015, 10, e0145240.	1.1	22
38	Forkhead box transcription factors as context-dependent regulators of lymphocyte homeostasis. Nature Reviews Immunology, 2018, 18, 703-715.	10.6	18
39	When less is more: the PI3K pathway as a determinant of tumor response to dietary restriction. Cell Research, 2009, 19, 797-799.	5.7	12
40	Regulation of a progenitor gene program by SOX4 is essential for mammary tumor proliferation. Oncogene, 2021, 40, 6343-6353.	2.6	9
41	Epigenetic drug screen identifies the histone deacetylase inhibitor NSC3852 as a potential novel drug for the treatment of pediatric acute myeloid leukemia. Pediatric Blood and Cancer, 2019, 66, e27785.	0.8	4
42	Transcriptomic and Epigenomic Profiling of Histone Deacetylase Inhibitor Treatment Reveals Distinct Gene Regulation Profiles Leading to Impaired Neutrophil Development. HemaSphere, 2019, 3, e270.	1.2	3
43	Forkhead box protein P1, a key player in neuronal development?. Neural Regeneration Research, 2018, 13, 801.	1.6	3
44	Human induced CD4+CD25+FOXP3+ regulatory T cells are suppressive in vitro, but fail to suppress inflammation in vivo. Annals of the Rheumatic Diseases, 2011, 70, A53-A53.	0.5	1
45	Differential Effects of Nitrostyrene Derivatives on Myelopoiesis Involve Regulation of C/EBPα and p38MAPK Activity. PLoS ONE, 2014, 9, e90586.	1.1	1
46	Blocking the Autophagy Pathway As Potential Target for the Treatment of Wild Type P53 AMLs. Blood, 2016, 128, 770-770.	0.6	1
47	Involvement of Lipid Rafts in Impaired fMLP-Stimulated ROS Production of GM-CSF-Primed Neutrophils from Patients with Myelodysplasia Blood, 2005, 106, 3863-3863.	0.6	0
48	Acetylation of C/EBPÎμ Is Functionally Important During Neutrophil Development. Blood, 2011, 118, 215-215.	0.6	0
49	Sugar addiction: An Achilles' heel of auto-immune diseases?. Cell Metabolism, 2022, 34, 503-505.	7.2	0