Jonathon Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/180852/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of the Streptococcus mutans Proteome during Acid and Oxidative Stress Reveals Modules of Protein Coexpression and an Expanded Role for the TreR Transcriptional Regulator. MSystems, 2022, 7, e0127221.	3.8	8
2	Complete Genome Sequence of " <i>Candidatus</i> Nanosynbacter―Strain HMT-348_TM7c-JB, a Member of <i>Saccharibacteria</i> Clade G1. Microbiology Resource Announcements, 2022, , e0002322.	0.6	2
3	<i>mucG, mucH,</i> and <i>mucl</i> Modulate Production of Mutanocyclin and Reutericyclins in Streptococcus mutans B04Sm5. Journal of Bacteriology, 2022, 204, e0004222.	2.2	4
4	Deep metagenomics examines the oral microbiome during dental caries, revealing novel taxa and co-occurrences with host molecules. Genome Research, 2021, 31, 64-74.	5.5	59
5	Identification of Bacterial Biosynthetic Gene Associated with Caries. Methods in Molecular Biology, 2021, 2327, 161-189.	0.9	2
6	Complete Genome Sequence of Strain JB001, a Member of Saccharibacteria Clade G6 (" Candidatus) Tj ETQq(0.0 rgBT	/gverlock 1
7	Complete Genomes of Clade G6 <i>Saccharibacteria</i> Suggest a Divergent Ecological Niche and Lifestyle. MSphere, 2021, 6, e0053021.	2.9	9
8	Multi-Omics Study of Keystone Species in a Cystic Fibrosis Microbiome. International Journal of Molecular Sciences, 2021, 22, 12050.	4.1	14
9	Tetramic Acids Mutanocyclin and Reutericyclin A, Produced by Streptococcus mutans Strain B04Sm5 Modulate the Ecology of an in vitro Oral Biofilm. Frontiers in Oral Health, 2021, 2, 796140.	3.0	5
10	Cariogenic <i>Streptococcus mutans</i> Produces Tetramic Acid Strain-Specific Antibiotics That Impair Commensal Colonization. ACS Infectious Diseases, 2020, 6, 563-571.	3.8	40
11	Composite Long- and Short-Read Sequencing Delivers a Complete Genome Sequence of B04Sm5, a Reutericyclin- and Mutanocyclin-Producing Strain of Streptococcus mutans. Microbiology Resource Announcements, 2020, 9, .	0.6	9
12	Development of a Bacteriophage Cocktail to Constrain the Emergence of Phage-Resistant Pseudomonas aeruginosa. Frontiers in Microbiology, 2020, 11, 327.	3.5	92
13	<i>Streptococcus mutans</i> SpxA2 relays the signal of cell envelope stress from LiaR to effectors that maintain cell wall and membrane homeostasis. Molecular Oral Microbiology, 2020, 35, 118-128.	2.7	10
14	Caries-Associated Biosynthetic Gene Clusters in <i>Streptococcus mutans</i> . Journal of Dental Research, 2020, 99, 969-976.	5.2	13
15	Precision Reengineering of the Oral Microbiome for Caries Management. Advances in Dental Research, 2019, 30, 34-39.	3.6	20

16	Identification of the Bacterial Biosynthetic Gene Clusters of the Oral Microbiome Illuminates the Unexplored Social Language of Bacteria during Health and Disease. MBio, 2019, 10, .	4.1	73
17	<i>Klebsiella</i> and <i>Providencia</i> emerge as lone survivors following long-term starvation of oral microbiota. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8499-8504.	7.1	30
18	Characterization of the Trehalose Utilization Operon in Streptococcus mutans Reveals that the TreR Transcriptional Regulator Is Involved in Stress Response Pathways and Toxin Production. Journal of Bacteriology, 2018, 200, .	2.2	24

JONATHON BAKER

#	Article	IF	CITATIONS
19	Exploiting the Oral Microbiome to Prevent Tooth Decay: Has Evolution Already Provided the Best Tools?. Frontiers in Microbiology, 2018, 9, 3323.	3.5	70
20	Acidâ€edaptive mechanisms of <i>Streptococcus mutans</i> –the more we know, the more we don't. Molecular Oral Microbiology, 2017, 32, 107-117.	2.7	75
21	Ecology of the Oral Microbiome: Beyond Bacteria. Trends in Microbiology, 2017, 25, 362-374.	7.7	222
22	A Modified Chromogenic Assay for Determination of the Ratio of Free Intracellular NAD+/NADH in Streptococcus mutans. Bio-protocol, 2016, 6, .	0.4	9
23	Transcriptional profile of glucoseâ€shocked and acidâ€adapted strains of <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2015, 30, 496-517.	2.7	27
24	Loss of NADH Oxidase Activity in Streptococcus mutans Leads to Rex-Mediated Overcompensation in NAD ⁺ Regeneration by Lactate Dehydrogenase. Journal of Bacteriology, 2015, 197, 3645-3657.	2.2	23
25	Streptococcus mutans NADH Oxidase Lies at the Intersection of Overlapping Regulons Controlled by Oxygen and NAD ⁺ Levels. Journal of Bacteriology, 2014, 196, 2166-2177.	2.2	54
26	Development and comparison of a quantitative TaqMan-MGB real-time PCR assay to three other methods of quantifying vaccinia virions. Journal of Virological Methods, 2014, 196, 126-132.	2.1	23
27	Host Factor SAMHD1 Restricts DNA Viruses in Non-Dividing Myeloid Cells. PLoS Pathogens, 2013, 9, e1003481.	4.7	151